Cu_(2)ZnSnS_(4)薄膜因其元素地壳含量丰富、无毒且具有优异的光电性能,受到研究者的广泛关注。本文基于纳米墨水法用Cd部分取代Zn制成了Cu_(2)(Cd x Zn_(1-x))SnS_(4)(CCZTS)薄膜,研究退火时间和后退火温度对薄膜及其太阳电池性能的影...Cu_(2)ZnSnS_(4)薄膜因其元素地壳含量丰富、无毒且具有优异的光电性能,受到研究者的广泛关注。本文基于纳米墨水法用Cd部分取代Zn制成了Cu_(2)(Cd x Zn_(1-x))SnS_(4)(CCZTS)薄膜,研究退火时间和后退火温度对薄膜及其太阳电池性能的影响。研究结果表明,所制备的薄膜为CCZTS相,无其他杂相,薄膜表面平整且致密,结晶性较好。随着退火时间增加,薄膜的晶粒尺寸有所增大,薄膜太阳电池的pn结质量得到提升,其性能也随之提高。通过对薄膜太阳电池进行后退火处理,分析了吸收层的元素扩散对电池性能的影响,在Cd元素形成梯度分布时,电池性能有所提高。随着后退火温度的增加,其电池性能和pn结质量呈现先提高后下降的趋势。经后退火300℃处理后,电池转换效率最佳,为3.13%。展开更多
文摘Cu_(2)ZnSnS_(4)薄膜因其元素地壳含量丰富、无毒且具有优异的光电性能,受到研究者的广泛关注。本文基于纳米墨水法用Cd部分取代Zn制成了Cu_(2)(Cd x Zn_(1-x))SnS_(4)(CCZTS)薄膜,研究退火时间和后退火温度对薄膜及其太阳电池性能的影响。研究结果表明,所制备的薄膜为CCZTS相,无其他杂相,薄膜表面平整且致密,结晶性较好。随着退火时间增加,薄膜的晶粒尺寸有所增大,薄膜太阳电池的pn结质量得到提升,其性能也随之提高。通过对薄膜太阳电池进行后退火处理,分析了吸收层的元素扩散对电池性能的影响,在Cd元素形成梯度分布时,电池性能有所提高。随着后退火温度的增加,其电池性能和pn结质量呈现先提高后下降的趋势。经后退火300℃处理后,电池转换效率最佳,为3.13%。
基金supported by the National Natural Science Foundation of China(51568068)the Young and Middle-aged Academic and Technical Leaders Reserve Talent Project(202105AC160054).