To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfa...To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.展开更多
The ornamental characters, nutritious composition, edible value and medical value of thirteen kinds of major wild fruit resources in Xiaoxing’an Mountains Region were synthetically analyzed such as Rosa spp,, Actinid...The ornamental characters, nutritious composition, edible value and medical value of thirteen kinds of major wild fruit resources in Xiaoxing’an Mountains Region were synthetically analyzed such as Rosa spp,, Actinidia spp. and so on. The results showed that the wild fruit resources in this region had important garden ornamental value, edible value and medical value. A lot of good germplasm resources and honey plant resources hadnt been effectvely protected and enough utilized. The right way of appropriate arrangement and reasonable exploitation of wild fruit resources in this region should be benefit to got rid of economic crisis early in this region.展开更多
We selected 18 rotten and nine healthy post- mature live standing Korean pine (Pinus koraiensis) to study the correlation between the degree of tree decay and soil physical-chemical properties in the Dialing Forest ...We selected 18 rotten and nine healthy post- mature live standing Korean pine (Pinus koraiensis) to study the correlation between the degree of tree decay and soil physical-chemical properties in the Dialing Forest District of the Xiaoxing'an Mountains, China. One trans- verse section of each sample tree at 40-50 cm height above the ground was tested by Resistograph to determine the inner decay status. We collected soil samples around the root zones (6-20 cm depth) of each sample tree to test the soil physical-chemical indicators including moisture con- tent, bulk density, total porosity, pH, organic matter con- tent, total and hydrolyzed N contents, total and available P contents, total and available K contents, and C/N ratio. The degree of decay of postmature Korean pine live standing trees was significantly and positively correlated with the C/N ratio (R = 0.838, P 〈 0.05), organic matter (R = 0.615, P = 0.007) and moisture content (R = 0.543, P = 0.020) of soil around the rodt. The contents of total N, hydrolyzed N and available P sample trees were significantly in the soil under healthy greater than those underdecayed sample trees, and larger N and P contents might inhibit the decay fungi breeding in soils of pH 4.4-6.29. The optimum multiple regression equation for degree of tree decay on soil physical-chemical indicators showed that the linear correlations between the degree of decay and soil C/N ratio and pH were significant (P 〈 0.01) and the correlation was high (R2 = 0.778). Enhancement soil C/N ratio and pH could promote the decay of tree trunks.展开更多
Using static chamber gas chromatography, we determined the seasonal dynamics, controlling factors, and distribution patterns of forest swamp CH4 levels and related environmental factors (temperature, water level) afte...Using static chamber gas chromatography, we determined the seasonal dynamics, controlling factors, and distribution patterns of forest swamp CH4 levels and related environmental factors (temperature, water level) after fire disturbance in the Xiaoxing’an Mountains. The results showed the following: during the growing season, the annual CH4 emission distribution ranged from - 0.001 ± 0.012 to 22.373 ± 3.650 mg m^-2 h^-1;mild fire caused the swamp CH4 emission flux of tussock, shrub, Alnus sibirica and birch swamp to increase by 56.0–524.7%;at low water levels, temperature had a significant influence on the swamp type, and the correlation between the methane emission flux and temperature was significantly strengthened;after a fire disturbance, methane emissions from all types of marsh were highest in summer and second highest in autumn, with a weak absorption in spring;and along the water environment gradient of the transition zone, the CH4 emission flux presented a decreasing trend in its spatial distribution pattern.展开更多
Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sin...Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sinks. Xiaoxing’anling are one of several concentrated distribution areas of forested wetland in China, but the carbon storage and carbon sink/source of forested wetlands in this area is unclear. We measured the ecosystem carbon storage (vegetation and soil), annual net carbon sequestration of vegetation and annual carbon emissions of soil heterotrophic respiration of five typical forested wetland types (alder swamp, white birch swamp, larch swamp, larch fen, and larch bog) distributed along a moisture gradient in this area in order to reveal the spatial variations of their carbon storage and quantitatively evaluate their position as carbon sink or source according to the net carbon balance of the ecosystems. The results show that the larch fen had high carbon storage (448.8 t ha^(−1)) (6.8% higher than the larch bog and 10.5–30.1% significantly higher than other three wetlands (P < 0.05), the white birch swamp and larch bog were medium carbon storage ecosystems (406.3 and 420.1 t ha^(−1)) (12.4–21.8% significantly higher than the other two types (P < 0.0 5), while the alder swamp and larch swamp were low in carbon storage (345.0 and 361.5 t ha^(−1), respectively). The carbon pools of the five wetlands were dominated by their soil carbon pools (88.5–94.5%), and the vegetation carbon pool was secondary (5.5–11.5%). At the same time, their ecosystem net carbon balances were positive (0.1–0.6 t ha^(−1) a^(−1)) because the annual net carbon sequestration of vegetation (4.0–4.5 t ha^(−1) a^(−1)) were higher than the annual carbon emissions of soil heterotrophic respiration (CO_(2) and CH_(4)) (3.8–4.4 t ha^(−1) a^(−1)) in four wetlands, (the alder swamp being the exception), so all four were carbon sinks while only the alder swamp was a source of carbon emissions (− 2.1 t ha^(−1) a^(−1)) due to a degraded tree layer. Our results demonstrate that these forested wetlands were generally carbon sinks in the Xiaoxing’anling, and there was obvious spatial variation in carbon storage of ecosystems along the moisture gradient.展开更多
Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-e...Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-exist-ing species reponded similarly to climate factors,although S.saltuaria was more sensitive than A.faxoniana.The strong-est correlation was between S.saltuaria chronology and regional mean temperatures from June to November.Based on this relationship,a regional mean temperature from June to November for the period 1605-2016 was constructed.Reconstruction explained 37.3%of the temperature variance during th period 1961-2016.Six major warm periods and five major cold periods were identified.Spectral analysis detected significant interannual and multi-decadal cycles.Reconstruction also revealed the influence of the Atlantic Multi-decadal Oscillation,confirming its importance on climate change on the eastern Tibetan Plateau.展开更多
Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous ...Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments.Despite its importance,we still lack systematic understanding for dissolved organic carbon(DOC)in several aspects including exact chemical composition and physical interactions with microorganisms,glacier meltwater.This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission,terrestrial,and biogenic sources.We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings.Results indicate that DOC in snow/ice is made up of aromatic protein-like species,fulvic acid-like materials,and humic acid-like materials.Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive.Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area.Owing to prevailing global warming and projected increase in carbon emission,the glacial DOC is expected to release,which will have strong underlying impacts on cryosphere ecosystem.The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions.A new compilation of globally distributed work is required,including large-scale measurements of glacial DOC over high-altitude cryosphere regions,to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models.展开更多
A set of standard chronologies for tree-ring width(TRW),earlywood width(EWW)and latewood width(LWW)in Pinus tabuliformis Carr.along an altitudi-nal gradient(1450,1400,and 1350 m a.s.l.)on Baiyunshan Mountain,Central C...A set of standard chronologies for tree-ring width(TRW),earlywood width(EWW)and latewood width(LWW)in Pinus tabuliformis Carr.along an altitudi-nal gradient(1450,1400,and 1350 m a.s.l.)on Baiyunshan Mountain,Central China to analyze the effect of varying temperature and precipitation on growth along the gradi-ent.Correlation analyses showed that at all three altitudes and the TRW and EWW chronologies generally had signifi-cant negative correlations with mean and maximum tem-peratures in the current April and May and with minimum temperatures in the prior July and August,but significant positive correlations with precipitation in the current May.Correlations were generally significantly negative between LWW chronologies and all temperatures in the prior July and August,indicating that the prior summer temperature had a strong lag effect on the growth of P.tabuliformis that increased with altitude.The correlation with the standard-ized precipitation evapotranspiration index(SPEI)confirmed that wet conditions in the current May promoted growth of TR and EW at all altitudes.Significant altitudinal differences were also found;at 1400 m,there were significant positive correlations between EWW chronologies and SPEI in the current April and significant negative correlations between LWW chronologies and SPEI in the current September,but these correlations were not significant at 1450 m.At 1350 m,there were also significant negative correlations between the TRW and the EWW chronologies and SPEI in the prior October and the current July and between LWW chronology and SPEI in the current August,but these cor-relations were not significant at 1400 m.Moving correlation results showed a stable response of EWW in relation to the SPEI in the current May at all three altitudes and of LWW to maximum temperature in the prior July-August at 1400 m from 2002 to 2018.The EWW chronology at 1400 m and the LWW chronology at 1450 m were identified as more suitable for climate reconstruction.These results provide a strong scientific basis for forest management decisions and climate reconstructions in Central China.展开更多
Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the ar...Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.展开更多
At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is es...At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.展开更多
Gaoligong Mountain(hereafter,GLGM)is located at the intersection of Myanmar and China’s Yunnan Province and Xizang Zizhiqu,and spans three globally significant biodiversity hotspots:the Himalayas,Indo-Burma,and the M...Gaoligong Mountain(hereafter,GLGM)is located at the intersection of Myanmar and China’s Yunnan Province and Xizang Zizhiqu,and spans three globally significant biodiversity hotspots:the Himalayas,Indo-Burma,and the Mountains of Southwest China.Although surveys of mammals in this ecologically important region have a long history,there is no comprehensive systematic checklist and distribution account of the mammals of GLGM.Here,we compiled a mammal species checklist of GLGM based on thorough field investigations and literature reviews.We also examined specimen collections and applied camera trapping surveys to explore the region’s mammal diversity and distribution patterns.We recorded 212 mammal species in nine orders,33 families,and 119 genera,which accounts for 30.5%of China’s mammal species,and a high proportion of nationally protected(50)and globally threatened(29)species.Mammal species richness showed a symmetrical unimodal curve along the elevation gradient,peaking at intermediate elevations(2000 to 2500 m above sea level(asl)),and increasing generally from south to north,slightly higher in the east slope than in the west.Cluster analysis and non-metric multidimensional scaling revealed three distinct elevational assemblages(<900 m asl.,900-3500 m asl.,and>3500 m asl)and significant south-to-north variation,but no substantial differences between the east and west slopes.The GLGM present a unique conservation value due to the high proportions of rare and endangered mammal species,complex faunal composition,high endemism,and being the distribution boundary for many species.This study is an important phased account of mammal diversity in GLGM and makes a prospect for future research.展开更多
The Gaoligong Mountains(GLGM),located in southwestern China,extend north to south along the western border of the Hengduan Mountains,spanning approximately 600 km.In this study,we consolidated findings from 17 bird su...The Gaoligong Mountains(GLGM),located in southwestern China,extend north to south along the western border of the Hengduan Mountains,spanning approximately 600 km.In this study,we consolidated findings from 17 bird surveys conducted in the GLGM between 2010 and 2022.We found that the GLGM harbors tremendous bird diversity,with a total of 796 documented bird species in the region.Nearly a quarter(23.0%)of these species are listed as state key protected species or as Chinese and global threatened species.Analysis of species richness at the county level showed a decreasing trend with increasing latitude,with the greatest diversity in Yingjiang(661 species).Observations indicated that the GLGM belongs to the Oriental realm,primarily composed of bird species from southern and southwestern China.The GLGM plays an important role in avian conservation by sheltering exceptional bird diversity,providing corridors and flyways for bird migration and dispersal,and mitigating the effects of climate change.In response to the conservation needs of birds and other wildlife,the Chinese government has established numerous protected areas within the GLGM.Despite these efforts,avian conservation still faces considerable challenges in the GLGM due to limitations in the protected area network,transboundary nature of the regions,and existing gaps in monitoring and research.展开更多
The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational develo...The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational development and utilization of water resources and planning of ecological environment protection.With the expansion and diversification of human activities,the quality of surface rivers will be more directly affected.Therefore,it is of great significance to pay attention to the hydrochemical characteristics of plateau surface rivers and the influence of human activities on their circulation and evolution.In this study,surface water in the Duoqu basin of Jinsha River located in Hengduan mountain region of Eastern Tibet was selected as the representative case.Twenty-three groups of surface water samples were collected to analyze the hydrochemical characteristics and ion sources based on correlation analysis,piper trigram,gibbs model,hydrogen and oxygen isotopic techniques.The results suggest the following:(1)The pH showed slight alkalinity with the value ranged from 7.25 to 8.62.Ca^(2+),Mg^(2+)and HCO_(3)^(–)were the main cations and anions.HCO_(3)^(-)Ca and HCO_(3)^(-)Ca·Mg were the primary hydrochemical types for the surface water of Duoqu River.The correlation analysis showed that TDS had the most significant correlation with Ca^(2+),Mg^(2+)and HCO_(3)^(–).Analysis on hydrogen and oxygen isotopes indicated that the surface rivers were mainly recharged by atmospheric precipitation and glacial melt water in this study area.(2)The surface water had a certain reverse cation alternating adsorption,and surface water ions were mainly derived from rock weathering,mainly controlled by weathering and dissolution of carbonates,and secondly by silicates and sodium rocks.(3)The influence of human activities was weak,while the development of cinnabar minerals had a certain impact on the hydrochemistry characteristics,which was the main factor for causing the increase of SO_(4)^(2–).The densely populated county towns and temples with frequent incense burning activities may cause some anomalies of surface water quality.At present,the Duoqu River watershed had gone through a certain influence of mineral exploitation,so the hydrological cycle and river eco-environment at watershed scale will still bound to be change.The results could provide basic support for better understanding water balance evolution as well as the ecological protection of Duoqu River watershed.展开更多
Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Q...Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.展开更多
The objective of this work is to extract walnut oil using various processes in order to compare the influence on the nature of the components extracted, and thus identify the areas of potential use. We carried out the...The objective of this work is to extract walnut oil using various processes in order to compare the influence on the nature of the components extracted, and thus identify the areas of potential use. We carried out the extractions by mechanical process, thanks to a press in reduced model provided with a worm. We obtained cold extracted oil whose characteristics slightly diverge from extra virgin oil found in shops in Romania, but its composition is similar. We were also able to extract by chemical process using two methods, Folch and Soxhlet. Commercially available table walnut oils are only cold extracted to avoid the presence of solvents. Those are difficult to remove and strongly oxidize the oil. Currently, consumers appreciate walnut oil for its taste and nutritional qualities. In nutrition, this oil is put forward for its composition rich in polyunsaturated fatty acids, which are needed for human body. Food supplements made from walnut oil are available today. For the moment, this is the only use of walnut oil. Indeed, there are some studies on other fields of application, but they remain in the field of research and nothing has yet been commercialized. In this present study, we compared the chemical and physical properties of cold-extracted oil with the solvent extraction of walnut kernel originating from the mountain region of Rumania. The cold extracted oil has a high content of polyunsaturated fatty acids (63%) and monounsaturated fatty acids (30%), a very low level of saturated fatty acid (7%) and no content of linolenic acid. The Soxhlet and Folch methods produced slightly different oils with increased amounts of minor components, which changes their characteristic. Even when solvent-extracted oils do not meet the standard criteria imposed by the Codex Alimentarius, they offer a possible use in the fields of food, cosmetics industries and biomedicine.展开更多
In the context of global climate change, this study reviews and discusses the three aspects of ecology, economic development of surrounding communities, ecological balance and snow mountain activities in the Haba Snow...In the context of global climate change, this study reviews and discusses the three aspects of ecology, economic development of surrounding communities, ecological balance and snow mountain activities in the Haba Snow Mountain Reserve through literature collation and research. 1) The Hengduan Mountain Plate of Haba Snow Mountain is affected by the high altitude temperate monsoon and is sensitive to climate change. There has been continuous glacier melting and snow line fluctuations. Although there is no forest line movement, the vegetation at the junction of the forest line has increased. 2) Human activities in the Haba Snow Mountain Reserve have shown an active trend, and the Biomass in various ecosystems in the region is inversely correlated. 3) Climate change will have a negative impact on landscape attraction and tourism safety in snowy mountain areas. 4) Haba Snow Mountain Reserve needs more perfect biological species statistical research and dynamic vegetation research to support the establishment of a perfect ecological protection strategy and ecological early warning in the region. 5) As the frequency of tourist activities in the Haba Protected Area increases, corresponding environmental protection signage, garbage cleaning methods, and tourist education have not been synchronizedly improved.展开更多
Mountains are unique terrestrial ecosystems characterized by distinct physiography,biological diversity,and socio-economic features.These ecosystems provide numerous essential goods and services to communities within ...Mountains are unique terrestrial ecosystems characterized by distinct physiography,biological diversity,and socio-economic features.These ecosystems provide numerous essential goods and services to communities within and beyond the mountains.Despite their significance,comprehensive studies that thoroughly characterize the ecosystem services of mountains are lacking.Such research is crucial to advance scientific understanding of mountain characteristics and ecosystem services.This study investigates mountain regions’unique characteristics and ecosystem services using global datasets such as the U.S.Geological Survey(USGS),the Global Mountain Biodiversity Assessment(GMBA),NASA EARTHDATA,and other relevant databases and literature review.The focus was to explore unique physiographic and socio-economic characteristics and ecosystem services provided by mountains.The results indicate that mountain ecosystems are pivotal in offering provisional,regulatory,and supporting ecosystem services on Earth.Despite their limited geographical area,these ecosystems supply substantial amounts of freshwater to communities living within and downstream of mountainous regions.Additionally,mountain ecosystems serve as global biodiversity hotspots,harboring a significant proportion of the world's species.However,mountain ecosystems face numerous natural and anthropogenic challenges,including climate change,habitat destruction,and resource overexploitation.Current efforts towards sustainable mountain development are inadequate.Enhanced scientific research and targeted policy measures are essential to address these challenges,protect mountain biodiversity,and ensure the continuous provision of vital ecosystem services.展开更多
As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c...As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,deg...Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,degradation of soils,and active layer thickness.EDW means that temperature is warming faster with the increase of altitude.In this study,we used observed temperature data during 1979-2017 from 23 meteorological stations in the Qilian Mountains(QLM)to analyze temperature trend with Mann-Kendall(MK)test and Sen’s slope approach.Results showed that the warming trends for the annual temperature followed the order of T_min>T_mean>T_max and with a shift both occurred in 1997.Spring and summer temperature have a higher increasing trend than that in autumn and winter.T_mean shifts occurred in 1996 for spring and summer,in 1997 for autumn and winter.T_max shifts occurred in 1997 for spring and 1996 for summer.T_min shifts occurred in 1997 for spring,summer and winter as well as in 1999 for autumn.Annual mean diurnal temperature range(DTR)shows a significant decreasing trend(-0.18°C/10a)from 1979 to 2017.Summer mean DTR shows a significant decreasing trend(-0.26°C/10a)from 1979 to 2017 with a shift occurred in 2010.After removing longitude and latitude factors,we can learn that the warming enhancement rate of average annual temperature is 0.0673°C/km/10a,indicating that the temperature warming trend is accelerating with the continuous increase of altitude.The increase rate of elevation temperature is 0.0371°C/km/10a in spring,0.0457°C/km/10a in summer,0.0707°C/km/10a in autumn,and 0.0606°C/km/10a in winter,which indicates that there is a clear EDW in the QLM.The main causes of warming in the Qilian Mountains are human activities,cloudiness,ice-snow feedback and El Nino phenomenon.展开更多
This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the exper...This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements.展开更多
基金funded by National Key Research and development project(2022YFD2201001)Project for Applied TechnologyResearch and Development in Heilongjiang Province(GA19C006).
文摘To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.
文摘The ornamental characters, nutritious composition, edible value and medical value of thirteen kinds of major wild fruit resources in Xiaoxing’an Mountains Region were synthetically analyzed such as Rosa spp,, Actinidia spp. and so on. The results showed that the wild fruit resources in this region had important garden ornamental value, edible value and medical value. A lot of good germplasm resources and honey plant resources hadnt been effectvely protected and enough utilized. The right way of appropriate arrangement and reasonable exploitation of wild fruit resources in this region should be benefit to got rid of economic crisis early in this region.
基金financially supported by the Introduction Program of New Tech from Overseas(20140478)the Forestry Nonprofit Special Research Project(201104007)
文摘We selected 18 rotten and nine healthy post- mature live standing Korean pine (Pinus koraiensis) to study the correlation between the degree of tree decay and soil physical-chemical properties in the Dialing Forest District of the Xiaoxing'an Mountains, China. One trans- verse section of each sample tree at 40-50 cm height above the ground was tested by Resistograph to determine the inner decay status. We collected soil samples around the root zones (6-20 cm depth) of each sample tree to test the soil physical-chemical indicators including moisture con- tent, bulk density, total porosity, pH, organic matter con- tent, total and hydrolyzed N contents, total and available P contents, total and available K contents, and C/N ratio. The degree of decay of postmature Korean pine live standing trees was significantly and positively correlated with the C/N ratio (R = 0.838, P 〈 0.05), organic matter (R = 0.615, P = 0.007) and moisture content (R = 0.543, P = 0.020) of soil around the rodt. The contents of total N, hydrolyzed N and available P sample trees were significantly in the soil under healthy greater than those underdecayed sample trees, and larger N and P contents might inhibit the decay fungi breeding in soils of pH 4.4-6.29. The optimum multiple regression equation for degree of tree decay on soil physical-chemical indicators showed that the linear correlations between the degree of decay and soil C/N ratio and pH were significant (P 〈 0.01) and the correlation was high (R2 = 0.778). Enhancement soil C/N ratio and pH could promote the decay of tree trunks.
基金supported by postdoctoral grant of HeiLongJiang(Grant No.LBH-Z17002)
文摘Using static chamber gas chromatography, we determined the seasonal dynamics, controlling factors, and distribution patterns of forest swamp CH4 levels and related environmental factors (temperature, water level) after fire disturbance in the Xiaoxing’an Mountains. The results showed the following: during the growing season, the annual CH4 emission distribution ranged from - 0.001 ± 0.012 to 22.373 ± 3.650 mg m^-2 h^-1;mild fire caused the swamp CH4 emission flux of tussock, shrub, Alnus sibirica and birch swamp to increase by 56.0–524.7%;at low water levels, temperature had a significant influence on the swamp type, and the correlation between the methane emission flux and temperature was significantly strengthened;after a fire disturbance, methane emissions from all types of marsh were highest in summer and second highest in autumn, with a weak absorption in spring;and along the water environment gradient of the transition zone, the CH4 emission flux presented a decreasing trend in its spatial distribution pattern.
基金This project was supported fi nancially by the National Key Research and Development Program of China(2016YFA0600803)the National Natural Science Foundation of China(31370461).
文摘Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sinks. Xiaoxing’anling are one of several concentrated distribution areas of forested wetland in China, but the carbon storage and carbon sink/source of forested wetlands in this area is unclear. We measured the ecosystem carbon storage (vegetation and soil), annual net carbon sequestration of vegetation and annual carbon emissions of soil heterotrophic respiration of five typical forested wetland types (alder swamp, white birch swamp, larch swamp, larch fen, and larch bog) distributed along a moisture gradient in this area in order to reveal the spatial variations of their carbon storage and quantitatively evaluate their position as carbon sink or source according to the net carbon balance of the ecosystems. The results show that the larch fen had high carbon storage (448.8 t ha^(−1)) (6.8% higher than the larch bog and 10.5–30.1% significantly higher than other three wetlands (P < 0.05), the white birch swamp and larch bog were medium carbon storage ecosystems (406.3 and 420.1 t ha^(−1)) (12.4–21.8% significantly higher than the other two types (P < 0.0 5), while the alder swamp and larch swamp were low in carbon storage (345.0 and 361.5 t ha^(−1), respectively). The carbon pools of the five wetlands were dominated by their soil carbon pools (88.5–94.5%), and the vegetation carbon pool was secondary (5.5–11.5%). At the same time, their ecosystem net carbon balances were positive (0.1–0.6 t ha^(−1) a^(−1)) because the annual net carbon sequestration of vegetation (4.0–4.5 t ha^(−1) a^(−1)) were higher than the annual carbon emissions of soil heterotrophic respiration (CO_(2) and CH_(4)) (3.8–4.4 t ha^(−1) a^(−1)) in four wetlands, (the alder swamp being the exception), so all four were carbon sinks while only the alder swamp was a source of carbon emissions (− 2.1 t ha^(−1) a^(−1)) due to a degraded tree layer. Our results demonstrate that these forested wetlands were generally carbon sinks in the Xiaoxing’anling, and there was obvious spatial variation in carbon storage of ecosystems along the moisture gradient.
基金This study was supported by the National Key Research and Development Program of China(No.2018YFA0605601)Hong Kong Research Grants Council(No.106220169)+1 种基金the National Natural Science Foundation of China(Nos.41671042,42077417,42105155,and 42201083)the National Geographic Society(No.EC-95776R-22).
文摘Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-exist-ing species reponded similarly to climate factors,although S.saltuaria was more sensitive than A.faxoniana.The strong-est correlation was between S.saltuaria chronology and regional mean temperatures from June to November.Based on this relationship,a regional mean temperature from June to November for the period 1605-2016 was constructed.Reconstruction explained 37.3%of the temperature variance during th period 1961-2016.Six major warm periods and five major cold periods were identified.Spectral analysis detected significant interannual and multi-decadal cycles.Reconstruction also revealed the influence of the Atlantic Multi-decadal Oscillation,confirming its importance on climate change on the eastern Tibetan Plateau.
基金supported by the second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0605)the National Natural Science Foundation of China(41971080)the support of Youth Innovation Promotion Association CAS(2021429)。
文摘Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments.Despite its importance,we still lack systematic understanding for dissolved organic carbon(DOC)in several aspects including exact chemical composition and physical interactions with microorganisms,glacier meltwater.This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission,terrestrial,and biogenic sources.We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings.Results indicate that DOC in snow/ice is made up of aromatic protein-like species,fulvic acid-like materials,and humic acid-like materials.Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive.Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area.Owing to prevailing global warming and projected increase in carbon emission,the glacial DOC is expected to release,which will have strong underlying impacts on cryosphere ecosystem.The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions.A new compilation of globally distributed work is required,including large-scale measurements of glacial DOC over high-altitude cryosphere regions,to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models.
基金This research was funded by National Key Research and Development Program of China(No.2018YFA0605601)National Natural Science Foundation of China(No.42077417,41671042).
文摘A set of standard chronologies for tree-ring width(TRW),earlywood width(EWW)and latewood width(LWW)in Pinus tabuliformis Carr.along an altitudi-nal gradient(1450,1400,and 1350 m a.s.l.)on Baiyunshan Mountain,Central China to analyze the effect of varying temperature and precipitation on growth along the gradi-ent.Correlation analyses showed that at all three altitudes and the TRW and EWW chronologies generally had signifi-cant negative correlations with mean and maximum tem-peratures in the current April and May and with minimum temperatures in the prior July and August,but significant positive correlations with precipitation in the current May.Correlations were generally significantly negative between LWW chronologies and all temperatures in the prior July and August,indicating that the prior summer temperature had a strong lag effect on the growth of P.tabuliformis that increased with altitude.The correlation with the standard-ized precipitation evapotranspiration index(SPEI)confirmed that wet conditions in the current May promoted growth of TR and EW at all altitudes.Significant altitudinal differences were also found;at 1400 m,there were significant positive correlations between EWW chronologies and SPEI in the current April and significant negative correlations between LWW chronologies and SPEI in the current September,but these correlations were not significant at 1450 m.At 1350 m,there were also significant negative correlations between the TRW and the EWW chronologies and SPEI in the prior October and the current July and between LWW chronology and SPEI in the current August,but these cor-relations were not significant at 1400 m.Moving correlation results showed a stable response of EWW in relation to the SPEI in the current May at all three altitudes and of LWW to maximum temperature in the prior July-August at 1400 m from 2002 to 2018.The EWW chronology at 1400 m and the LWW chronology at 1450 m were identified as more suitable for climate reconstruction.These results provide a strong scientific basis for forest management decisions and climate reconstructions in Central China.
基金supported by National Natural Science Foundation of China(Grant Nos.4203070 and 41977217)the Key Research&Development Program of Shaanxi Province(Grant No.2020ZDLSF06-03).
文摘Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.
基金National Natural Science Fund of China under Nos.52168072 and 51808467High-level Talents Support Plan of Yunnan Province of China(2020)。
文摘At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.
基金supported by the National Key Research and Development Program of China(2022YFC2602500,2022YFC2601200)Major Science and Technique Programs in Yunnan Province(202102AA310055)+6 种基金Science and Technology Basic Resources Investigation Program of China(2021FY100200)Project for Talent and Platform of Science and Technology in Yunnan Province Science and Technology Department(202205AM070007)National Natural Science Foundation of China(32000304)Yunnan Fundamental Research Projects(202101AT070294)Chinese Academy of Sciences“Light of West China”Program and Yunnan Revitalization Talent Support Program Young Talent Project(XDYC-QNRC-2022-0379 to Q.L.)Chinese Academy of Sciences“Light of West China”Program(292021000004 to X.Y.L.)Yunnan Provincial Youth Talent Support Program(YNWR-QNBJ-2020-127 to X.Y.L.)。
文摘Gaoligong Mountain(hereafter,GLGM)is located at the intersection of Myanmar and China’s Yunnan Province and Xizang Zizhiqu,and spans three globally significant biodiversity hotspots:the Himalayas,Indo-Burma,and the Mountains of Southwest China.Although surveys of mammals in this ecologically important region have a long history,there is no comprehensive systematic checklist and distribution account of the mammals of GLGM.Here,we compiled a mammal species checklist of GLGM based on thorough field investigations and literature reviews.We also examined specimen collections and applied camera trapping surveys to explore the region’s mammal diversity and distribution patterns.We recorded 212 mammal species in nine orders,33 families,and 119 genera,which accounts for 30.5%of China’s mammal species,and a high proportion of nationally protected(50)and globally threatened(29)species.Mammal species richness showed a symmetrical unimodal curve along the elevation gradient,peaking at intermediate elevations(2000 to 2500 m above sea level(asl)),and increasing generally from south to north,slightly higher in the east slope than in the west.Cluster analysis and non-metric multidimensional scaling revealed three distinct elevational assemblages(<900 m asl.,900-3500 m asl.,and>3500 m asl)and significant south-to-north variation,but no substantial differences between the east and west slopes.The GLGM present a unique conservation value due to the high proportions of rare and endangered mammal species,complex faunal composition,high endemism,and being the distribution boundary for many species.This study is an important phased account of mammal diversity in GLGM and makes a prospect for future research.
基金supported by the National Key R&D Program of China(2022YFC2602500,2022YFC2602502)Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment,China,Second Xizang Plateau Scientific Expedition and Research Program(STEP,2019QZKK0501)+3 种基金Major Science and Technique Programs in Yunnan Province(202102AA310055)National Natural Science Foundation of China(32070435)Science and Technology Basic Resources Investigation Program of China“Wild germplasm collection and preservation in Great Gaoligong Mountain”(2021FY100200)Project for Talent and Platform of Science and Technology in Yunnan Province Science and Technology Department(202205AM070007)。
文摘The Gaoligong Mountains(GLGM),located in southwestern China,extend north to south along the western border of the Hengduan Mountains,spanning approximately 600 km.In this study,we consolidated findings from 17 bird surveys conducted in the GLGM between 2010 and 2022.We found that the GLGM harbors tremendous bird diversity,with a total of 796 documented bird species in the region.Nearly a quarter(23.0%)of these species are listed as state key protected species or as Chinese and global threatened species.Analysis of species richness at the county level showed a decreasing trend with increasing latitude,with the greatest diversity in Yingjiang(661 species).Observations indicated that the GLGM belongs to the Oriental realm,primarily composed of bird species from southern and southwestern China.The GLGM plays an important role in avian conservation by sheltering exceptional bird diversity,providing corridors and flyways for bird migration and dispersal,and mitigating the effects of climate change.In response to the conservation needs of birds and other wildlife,the Chinese government has established numerous protected areas within the GLGM.Despite these efforts,avian conservation still faces considerable challenges in the GLGM due to limitations in the protected area network,transboundary nature of the regions,and existing gaps in monitoring and research.
基金financially supported by the Geological Survey Project of China Geological Survey(DD20230077,DD20230456,DD20230424)。
文摘The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational development and utilization of water resources and planning of ecological environment protection.With the expansion and diversification of human activities,the quality of surface rivers will be more directly affected.Therefore,it is of great significance to pay attention to the hydrochemical characteristics of plateau surface rivers and the influence of human activities on their circulation and evolution.In this study,surface water in the Duoqu basin of Jinsha River located in Hengduan mountain region of Eastern Tibet was selected as the representative case.Twenty-three groups of surface water samples were collected to analyze the hydrochemical characteristics and ion sources based on correlation analysis,piper trigram,gibbs model,hydrogen and oxygen isotopic techniques.The results suggest the following:(1)The pH showed slight alkalinity with the value ranged from 7.25 to 8.62.Ca^(2+),Mg^(2+)and HCO_(3)^(–)were the main cations and anions.HCO_(3)^(-)Ca and HCO_(3)^(-)Ca·Mg were the primary hydrochemical types for the surface water of Duoqu River.The correlation analysis showed that TDS had the most significant correlation with Ca^(2+),Mg^(2+)and HCO_(3)^(–).Analysis on hydrogen and oxygen isotopes indicated that the surface rivers were mainly recharged by atmospheric precipitation and glacial melt water in this study area.(2)The surface water had a certain reverse cation alternating adsorption,and surface water ions were mainly derived from rock weathering,mainly controlled by weathering and dissolution of carbonates,and secondly by silicates and sodium rocks.(3)The influence of human activities was weak,while the development of cinnabar minerals had a certain impact on the hydrochemistry characteristics,which was the main factor for causing the increase of SO_(4)^(2–).The densely populated county towns and temples with frequent incense burning activities may cause some anomalies of surface water quality.At present,the Duoqu River watershed had gone through a certain influence of mineral exploitation,so the hydrological cycle and river eco-environment at watershed scale will still bound to be change.The results could provide basic support for better understanding water balance evolution as well as the ecological protection of Duoqu River watershed.
基金supported by Basic Research Operating Expenses of the Central level Non-profit Research Institutes (IDM2022003)National Natural Science Foundation of China (42375054)+2 种基金Regional collaborative innovation project of Xinjiang (2021E01022,2022E01045)Young Meteorological Talent Program of China Meteorological Administration,Tianshan Talent Program of Xinjiang (2022TSYCCX0003)Youth Innovation Team of China Meteorological Administration (CMA2023QN08).
文摘Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.
文摘The objective of this work is to extract walnut oil using various processes in order to compare the influence on the nature of the components extracted, and thus identify the areas of potential use. We carried out the extractions by mechanical process, thanks to a press in reduced model provided with a worm. We obtained cold extracted oil whose characteristics slightly diverge from extra virgin oil found in shops in Romania, but its composition is similar. We were also able to extract by chemical process using two methods, Folch and Soxhlet. Commercially available table walnut oils are only cold extracted to avoid the presence of solvents. Those are difficult to remove and strongly oxidize the oil. Currently, consumers appreciate walnut oil for its taste and nutritional qualities. In nutrition, this oil is put forward for its composition rich in polyunsaturated fatty acids, which are needed for human body. Food supplements made from walnut oil are available today. For the moment, this is the only use of walnut oil. Indeed, there are some studies on other fields of application, but they remain in the field of research and nothing has yet been commercialized. In this present study, we compared the chemical and physical properties of cold-extracted oil with the solvent extraction of walnut kernel originating from the mountain region of Rumania. The cold extracted oil has a high content of polyunsaturated fatty acids (63%) and monounsaturated fatty acids (30%), a very low level of saturated fatty acid (7%) and no content of linolenic acid. The Soxhlet and Folch methods produced slightly different oils with increased amounts of minor components, which changes their characteristic. Even when solvent-extracted oils do not meet the standard criteria imposed by the Codex Alimentarius, they offer a possible use in the fields of food, cosmetics industries and biomedicine.
文摘In the context of global climate change, this study reviews and discusses the three aspects of ecology, economic development of surrounding communities, ecological balance and snow mountain activities in the Haba Snow Mountain Reserve through literature collation and research. 1) The Hengduan Mountain Plate of Haba Snow Mountain is affected by the high altitude temperate monsoon and is sensitive to climate change. There has been continuous glacier melting and snow line fluctuations. Although there is no forest line movement, the vegetation at the junction of the forest line has increased. 2) Human activities in the Haba Snow Mountain Reserve have shown an active trend, and the Biomass in various ecosystems in the region is inversely correlated. 3) Climate change will have a negative impact on landscape attraction and tourism safety in snowy mountain areas. 4) Haba Snow Mountain Reserve needs more perfect biological species statistical research and dynamic vegetation research to support the establishment of a perfect ecological protection strategy and ecological early warning in the region. 5) As the frequency of tourist activities in the Haba Protected Area increases, corresponding environmental protection signage, garbage cleaning methods, and tourist education have not been synchronizedly improved.
文摘Mountains are unique terrestrial ecosystems characterized by distinct physiography,biological diversity,and socio-economic features.These ecosystems provide numerous essential goods and services to communities within and beyond the mountains.Despite their significance,comprehensive studies that thoroughly characterize the ecosystem services of mountains are lacking.Such research is crucial to advance scientific understanding of mountain characteristics and ecosystem services.This study investigates mountain regions’unique characteristics and ecosystem services using global datasets such as the U.S.Geological Survey(USGS),the Global Mountain Biodiversity Assessment(GMBA),NASA EARTHDATA,and other relevant databases and literature review.The focus was to explore unique physiographic and socio-economic characteristics and ecosystem services provided by mountains.The results indicate that mountain ecosystems are pivotal in offering provisional,regulatory,and supporting ecosystem services on Earth.Despite their limited geographical area,these ecosystems supply substantial amounts of freshwater to communities living within and downstream of mountainous regions.Additionally,mountain ecosystems serve as global biodiversity hotspots,harboring a significant proportion of the world's species.However,mountain ecosystems face numerous natural and anthropogenic challenges,including climate change,habitat destruction,and resource overexploitation.Current efforts towards sustainable mountain development are inadequate.Enhanced scientific research and targeted policy measures are essential to address these challenges,protect mountain biodiversity,and ensure the continuous provision of vital ecosystem services.
基金This study was supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
基金financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23060301)the National Natural Science Foundation of China(No.41621001).
文摘Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,degradation of soils,and active layer thickness.EDW means that temperature is warming faster with the increase of altitude.In this study,we used observed temperature data during 1979-2017 from 23 meteorological stations in the Qilian Mountains(QLM)to analyze temperature trend with Mann-Kendall(MK)test and Sen’s slope approach.Results showed that the warming trends for the annual temperature followed the order of T_min>T_mean>T_max and with a shift both occurred in 1997.Spring and summer temperature have a higher increasing trend than that in autumn and winter.T_mean shifts occurred in 1996 for spring and summer,in 1997 for autumn and winter.T_max shifts occurred in 1997 for spring and 1996 for summer.T_min shifts occurred in 1997 for spring,summer and winter as well as in 1999 for autumn.Annual mean diurnal temperature range(DTR)shows a significant decreasing trend(-0.18°C/10a)from 1979 to 2017.Summer mean DTR shows a significant decreasing trend(-0.26°C/10a)from 1979 to 2017 with a shift occurred in 2010.After removing longitude and latitude factors,we can learn that the warming enhancement rate of average annual temperature is 0.0673°C/km/10a,indicating that the temperature warming trend is accelerating with the continuous increase of altitude.The increase rate of elevation temperature is 0.0371°C/km/10a in spring,0.0457°C/km/10a in summer,0.0707°C/km/10a in autumn,and 0.0606°C/km/10a in winter,which indicates that there is a clear EDW in the QLM.The main causes of warming in the Qilian Mountains are human activities,cloudiness,ice-snow feedback and El Nino phenomenon.
文摘This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements.