Xylose is the second major fermentable sugar present in lignocellulosic hydrolysates, so its fermentation is essential for the economic con- version of lignocellulose to ethanol. However, the traditional ethanol produ...Xylose is the second major fermentable sugar present in lignocellulosic hydrolysates, so its fermentation is essential for the economic con- version of lignocellulose to ethanol. However, the traditional ethanol production strain Sacch- aromyces cerevisiae does not naturally use xy-lose as a substrate. A number of different ap-proaches have been used to engineer yeasts to reconstruct the gene background of S. cerevi- siae in recent years. The recombinant strains showed better xylose fermentation quality by comparison with the natural strains. This review examines the research on S. cerevisiae strains that have been genetically modified or adapted to ferment xylose to ethanol from three aspects including construction of xylose transportation, xylose-metabolic pathway and inhibitor toler-ance improvement of S. cerevisiae.展开更多
文摘Xylose is the second major fermentable sugar present in lignocellulosic hydrolysates, so its fermentation is essential for the economic con- version of lignocellulose to ethanol. However, the traditional ethanol production strain Sacch- aromyces cerevisiae does not naturally use xy-lose as a substrate. A number of different ap-proaches have been used to engineer yeasts to reconstruct the gene background of S. cerevi- siae in recent years. The recombinant strains showed better xylose fermentation quality by comparison with the natural strains. This review examines the research on S. cerevisiae strains that have been genetically modified or adapted to ferment xylose to ethanol from three aspects including construction of xylose transportation, xylose-metabolic pathway and inhibitor toler-ance improvement of S. cerevisiae.