Water transport through the pore structure of the knitted fabric can occur only in place where the fiber-water surface attraction force is greater than the water weight in the capillary. To investigate wet permeabilit...Water transport through the pore structure of the knitted fabric can occur only in place where the fiber-water surface attraction force is greater than the water weight in the capillary. To investigate wet permeability of the knitted yarn in the fabric, a liquid transport model is established. The main factors which have significant influences on the liquid transport have been analyzed. It is derived from the argument that the optimal design for the knitted fabric with quick sweat transport property can be obtained.展开更多
In order to solve the problem that sweat flows back into the internal layer from the external layer in double-layer knits, a fabric structure model is set up and the conditions that keep the sweat from flowing back in...In order to solve the problem that sweat flows back into the internal layer from the external layer in double-layer knits, a fabric structure model is set up and the conditions that keep the sweat from flowing back into the internal layer from the external layer are presented. It can be used to improve the design of the double-layer knits theoretically.展开更多
文摘Water transport through the pore structure of the knitted fabric can occur only in place where the fiber-water surface attraction force is greater than the water weight in the capillary. To investigate wet permeability of the knitted yarn in the fabric, a liquid transport model is established. The main factors which have significant influences on the liquid transport have been analyzed. It is derived from the argument that the optimal design for the knitted fabric with quick sweat transport property can be obtained.
文摘In order to solve the problem that sweat flows back into the internal layer from the external layer in double-layer knits, a fabric structure model is set up and the conditions that keep the sweat from flowing back into the internal layer from the external layer are presented. It can be used to improve the design of the double-layer knits theoretically.