The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, h...The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, have been observed for the Er^3+-doped silicate glass excited by a 978 nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296-673 K, which shows that Er^3+-doped silicate glass can be used as a sensor in high-temperature measurement.展开更多
A Series of niobate silicate glasses doped with Eu 3+ ions were prepared. The emission, phonon side band spectra, fluorescence line narrowing spectroscopy and fluorescence lifetimes in these glasses were studie...A Series of niobate silicate glasses doped with Eu 3+ ions were prepared. The emission, phonon side band spectra, fluorescence line narrowing spectroscopy and fluorescence lifetimes in these glasses were studied. The intensity parameters and crystal field parameter of Eu 3+ were obtained. The results indicate that the intensity ratio of the electric dipole to magnetic dipole transition and the intensity parameter Ω 2 increase with the increasing concentration of Nb 2O 5, indicating that the symmetry becomes lower, the Eu O bonds become stronger and the covalency of Eu O bond increases. The value of B 20 decreases with the increasing concentration of Nb 2O 5, indicating that the distance between the Eu 3+ ion and oxygen decreases and the Eu O bond becomes strong, corresponding to the results of the former. As the concentration of Nb 2O 5 increases, the electron phonon coupling becomes stronger, thus the nonradiative transition rate of 5D 0 becomes larger and the lifetime of 5D 0 becomes shorter.展开更多
A detailed study of the fluorescence emission properties and energy transfer mechanism in Er^(3+)/Tm^(3+) co-doped lead silicate glasses was reported. Enhanced near infrared 1.8 μm and visible up-conversion emi...A detailed study of the fluorescence emission properties and energy transfer mechanism in Er^(3+)/Tm^(3+) co-doped lead silicate glasses was reported. Enhanced near infrared 1.8 μm and visible up-conversion emissions were investigated under 808 and 980 nm excitations, respectively. The energy transfer mechanism between Er^(3+) and Tm^(3+) was analyzed according to the absorption spectra, the emission spectra and the level structures of Er^(3+) and Tm^(3+). The energy transfer efficiency between Er^(3+) and Tm^(3+) reached 68.1% in the Er^(3+)/Tm^(3+) co-doped lead silicate glasses when pumped by 808 nm laser diode. Based on the absorption spectra, the Judd-Ofelt parameters, spontaneous emission probability, absorption and emission cross sections, gain coefficients were calculated and analyzed. It was found that the calculated emission cross section and the maximum gain coefficient around 1.8 μm were 4.9×10^(–21)cm^2 and 1.12 cm^(–1), respectively. These results indicated that the Er^(3+)/Tm^(3+) co-doped lead-silicate glasses had potential application in near infrared lasers.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60477023)the Natural Science Foundation of Science and Technology Commission of Liaoning Province, China (Grant No 20062137)
文摘The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, have been observed for the Er^3+-doped silicate glass excited by a 978 nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296-673 K, which shows that Er^3+-doped silicate glass can be used as a sensor in high-temperature measurement.
文摘A Series of niobate silicate glasses doped with Eu 3+ ions were prepared. The emission, phonon side band spectra, fluorescence line narrowing spectroscopy and fluorescence lifetimes in these glasses were studied. The intensity parameters and crystal field parameter of Eu 3+ were obtained. The results indicate that the intensity ratio of the electric dipole to magnetic dipole transition and the intensity parameter Ω 2 increase with the increasing concentration of Nb 2O 5, indicating that the symmetry becomes lower, the Eu O bonds become stronger and the covalency of Eu O bond increases. The value of B 20 decreases with the increasing concentration of Nb 2O 5, indicating that the distance between the Eu 3+ ion and oxygen decreases and the Eu O bond becomes strong, corresponding to the results of the former. As the concentration of Nb 2O 5 increases, the electron phonon coupling becomes stronger, thus the nonradiative transition rate of 5D 0 becomes larger and the lifetime of 5D 0 becomes shorter.
基金Project supported by the China National Funds for Distinguished Young Scientists(61325024)Hi-tech Research and Development Program of China(National 863 Project:2014AA041902)+2 种基金National Nature Science Foundation of China(11174085,51132004,51302086)the Fund of Guangdong Province Cooperation of Producing,Studying and Researching(2012B091100140)Guangdong Natural Science Foundation(S2011030001349)
文摘A detailed study of the fluorescence emission properties and energy transfer mechanism in Er^(3+)/Tm^(3+) co-doped lead silicate glasses was reported. Enhanced near infrared 1.8 μm and visible up-conversion emissions were investigated under 808 and 980 nm excitations, respectively. The energy transfer mechanism between Er^(3+) and Tm^(3+) was analyzed according to the absorption spectra, the emission spectra and the level structures of Er^(3+) and Tm^(3+). The energy transfer efficiency between Er^(3+) and Tm^(3+) reached 68.1% in the Er^(3+)/Tm^(3+) co-doped lead silicate glasses when pumped by 808 nm laser diode. Based on the absorption spectra, the Judd-Ofelt parameters, spontaneous emission probability, absorption and emission cross sections, gain coefficients were calculated and analyzed. It was found that the calculated emission cross section and the maximum gain coefficient around 1.8 μm were 4.9×10^(–21)cm^2 and 1.12 cm^(–1), respectively. These results indicated that the Er^(3+)/Tm^(3+) co-doped lead-silicate glasses had potential application in near infrared lasers.