Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyc...Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyces cerevisiae strains.Development of industrial S.cerevisiae strains with high tolerance towards these inhibitors is thus critical for efficient lignocellulosic ethanol production.In this study,the acetic acid or furfural tolerance of different S.cerevisiae strains could be significantly enhanced after adaptive evolution via serial cultivation for 40 generations under stress conditions.The acetic acid-based adaptive strain SPSC01-TA9 produced 30.5 g·L^(-1)ethanol with a yield of 0.46 g·g^(-1)in the presence of 9 g·L^(-1)acetic acid,while the acetic acid/furfural-based adaptive strain SPSC01-TAF94 produced more ethanol of 36.2 g·L^(-1)with increased yield up to 0.49 g·g^(-1)in the presence of both 9 g·L^(-1)acetic acid and 4 g·L^(-1)furfural.Significant improvements were also observed during non-detoxified corn stover hydrolysate culture by SPSC01-TAF94,which achieved ethanol production and yield of 29.1 g·L^(-1)and 0.49 g·g^(-1),respectively,the growth and fermentation efficiency of acetic acid/furfural-based adaptive strain in hydrolysate was 95%higher than those of wildtype strains,indicating the acetic acid-and furfural-based adaptive evolution strategy could be an effective approach for improving lignocellulosic ethanol production.The adapted strains developed in this study with enhanced tolerance against acetic acid and furfural could be potentially contribute to economically feasible and sustainable lignocellulosic biorefinery.展开更多
Background Subacute ruminal acidosis(SARA)is a common metabolic disorder of high yielding dairy cows,and it is associated with dysbiosis of the rumen and gut microbiome and host inflammation.This study evaluated the i...Background Subacute ruminal acidosis(SARA)is a common metabolic disorder of high yielding dairy cows,and it is associated with dysbiosis of the rumen and gut microbiome and host inflammation.This study evaluated the impact of two postbiotics from Saccharomyces cerevisiae fermentation products(SCFP)on rumen liquid associated microbiota of lactating dairy cows subjected to repeated grain-based SARA challenges.A total of 32 rumen cannulated cows were randomly assigned to 4 treatments from 4 weeks before until 12 weeks after parturition.Treatment groups included a Control diet or diets supplemented with postbiotics(SCFPa,14 g/d Original XPC;SCFPb-1X,19 g/d Nutri Tek;SCFPb-2X,38 g/d Nutri Tek,Diamond V,Cedar Rapids,IA,USA).Grain-based SARA challenges were conducted during week 5(SARA1)and week 8(SARA2)after parturition by replacing 20%DM of the base total mixed ration(TMR)with pellets containing 50%ground barley and 50%ground wheat.Total DNA from rumen liquid samples was subjected to V3–V416S r RNA gene amplicon sequencing.Characteristics of rumen microbiota were compared among treatments and SARA stages.Results Both SARA challenges reduced the diversity and richness of rumen liquid microbiota,altered the overall composition(β-diversity),and its predicted functionality including carbohydrates and amino acids metabolic pathways.The SARA challenges also reduced the number of significant associations among different taxa,number of hub taxa and their composition in the microbial co-occurrence networks.Supplementation with SCFP postbiotics,in particular SCFPb-2X,enhanced the robustness of the rumen microbiota.The SCFP supplemented cows had less fluctuation in relative abundances of community members when exposed to SARA challenges.The SCFP supplementation promoted the populations of lactate utilizing and fibrolytic bacteria,including members of Ruminococcaceae and Lachnospiraceae,and also increased the numbers of hub taxa during non-SARA and SARA stages.Supplementation with SCFPb-2X prevented the fluctuations in the abundances of hub taxa that were positively correlated with the acetate concentration,andα-andβ-diversity metrics in rumen liquid digesta.Conclusions Induction of SARA challenges reduced microbiota richness and diversity and caused fluctuations in major bacterial phyla in rumen liquid microbiota in lactating dairy cows.Supplementation of SCFP postbiotics could attenuate adverse effects of SARA on rumen liquid microbiota.展开更多
BACKGROUND Postoperative recurrence(POR)after ileocecal resection(ICR)affects most Crohn's disease patients within 3-5 years after surgery.Adherent-invasive Escherichia coli(AIEC)typified by the LF82 strain are pa...BACKGROUND Postoperative recurrence(POR)after ileocecal resection(ICR)affects most Crohn's disease patients within 3-5 years after surgery.Adherent-invasive Escherichia coli(AIEC)typified by the LF82 strain are pathobionts that are frequently detected in POR of Crohn's disease and have a potential role in the early stages of the disease pathogenesis.Saccharomyces cerevisiae CNCM I-3856 is a probiotic yeast reported to inhibit AIEC adhesion to intestinal epithelial cells and to favor their elimination from the gut.AIM To evaluate the efficacy of CNCM I-3856 in preventing POR induced by LF82 in an HLA-B27 transgenic(TgB27)rat model.METHODS Sixty-four rats[strain F344,38 TgB27,26 control non-Tg(nTg)]underwent an ICR at the 12th wk(W12)of life and were sacrificed at the 18th wk(W18)of life.TgB27 rats were challenged daily with oral administration of LF82(109 colony forming units(CFUs)/day(d),n=8),PBS(n=5),CNCM I-3856(109 CFUs/d,n=7)or a combination of LF82 and CNCM I-3856(n=18).nTg rats receiving LF82(n=5),PBS(n=5),CNCM I-3856(n=7)or CNCM I-3856 and LF82(n=9)under the same conditions were used as controls.POR was analyzed using macroscopic(from 0 to 4)and histologic(from 0 to 6)scores.Luminal LF82 quantifications were performed weekly for each animal.Adherent LF82 and inflammatory/regulatory cytokines were quantified in biopsies at W12 and W18.Data are expressed as the median with the interquartile range.RESULTS nTg animals did not develop POR.A total of 7/8(87%)of the TgB27 rats receiving LF82 alone had POR(macroscopic score≥2),which was significantly prevented by CNCM I-3856 administration[6/18(33%)TgB27 rats,P=0.01].Macroscopic lesions were located 2 cm above the anastomosis in the TgB27 rats receiving LF82 alone and consisted of ulcerations with a score of 3.5(2-4).Seven out of 18 TgB27 rats(39%)receiving CNCM I-3856 and LF82 had no macroscopic lesions.Compared to untreated TgB27 animals receiving LF82 alone,coadministration of CNCM I-3856 and LF82 significantly reduced the macroscopic[3.5(2-4)vs 1(0-3),P=0.002]and histological lesions by more than 50%[4.5(3.3-5.8)vs 2(1.3-3),P=0.003].The levels of adherent LF82 were correlated with anastomotic macroscopic scores in TgB27 rats(r=0.49,P=0.006),with a higher risk of POR in animals having high levels of luminal LF82(71.4%vs 25%,P=0.02).Administration of CNCM I-3856 significantly reduced the levels of luminal and adherent LF82,increased the production of interleukin(IL)-10 and decreased the production of IL-23 and IL-17 in TgB27 rats.CONCLUSION In a reliable model of POR induced by LF82 in TgB27 rats,CNCM I-3856 prevents macroscopic POR by decreasing LF82 infection and gut inflammation.展开更多
Excessive fusel alcohol contents will cause the beer to produce off-flavors and cause dizziness and headaches.Reducing the contents of fusel alcohols in beer is very important to people's health.The excessive fuse...Excessive fusel alcohol contents will cause the beer to produce off-flavors and cause dizziness and headaches.Reducing the contents of fusel alcohols in beer is very important to people's health.The excessive fusel alcohol contents in beer is a common problem in the industry.How to control the contents of fusel alcohols in a reasonable range is of great significance for improving beer quality.After one round of ultraviolet(UV)and one round of multifunctional plasma mutagenesis system(MPMS)mutagenesis,the yeast strains with lower fusel oil yield and more stablility could be screened.According to the relationship between the fusel alcohol Harris metabolic pathway of brewer's yeast and lactic acid metabolism,excellent strains were obtained by triple screening with lactic acid medium,calcium carbonate medium and 2,3,5-triphenyl tetrazolium chloride upper medium.The content of fusel alcohol in the finished beer fermentation test of screened strain Z43 was 52.1±0.142 mg•L^(-1),which was 43%lower than that of the starting strain,and other fermentation properties remained unchanged.After eight passages,it was verified that the strain was stable and heritable.These results showed that strain Z43 presented promising characteristics for use in the production of beer with a potentially low contents of fusel alcohols.展开更多
The present study was conducted to determine effects of different forms of yeast (Saccharomyces cerevisiae, strain Y200007) on the growth performance, intestinal development, and systemic immunity in early-weaned pi...The present study was conducted to determine effects of different forms of yeast (Saccharomyces cerevisiae, strain Y200007) on the growth performance, intestinal development, and systemic immunity in early-weaned piglets. A total of 96 piglets (14-d old, initial average body weight of 4.5 kg) were assigned to 4 dietary treatments: (1) basa diet without yeast (Control); (2) basal diet supplemented with 3.00 g/kg live yeast (LY); (3) basal diet supplemented with 2.66 g/kg heat-killed whole yeast (HKY); and (4) basal diet supplemented with 3.00 g/kg superfine yeast powders (SFY). Diets and water were provided ad libitum to the piglets during 3-week experiment. Growth performance of piglets was measured weekly. Samples of blood and small intestine were collected at days 7 and 21 of experiment. Dietary supplementation with LY and SFY improved G:F of piglets at days ]-21 of the experiment (P 〈 0.05) compared to Control group. Serum concentrations of growth hormone (GH), triiodothyronine (T3), tetraiodothyronine (T4), and insulin growth factor 1 (iGF-1) in piglets at day 21 of the experiment were higher when fed diets supplemented with LY and SFY than those in Control group (P 〈 0.05). Compared to Control group, contents of serum urea nitrogen of piglets were reduced by the 3 yeast-supplemented diets (P 〈 0.05). Diets supplemented with LY increased villus height and villus-to-crypt ratio in duodenum and jejunum of piglets (P 〈 0.05) compared to other two groups at day 7 of the experiment. Feeding diets supplemented with LY and SFY increased (P 〈 0.05) serum concentrations of IgA, IL-2, and IL-6 levels in piglets compared to Control. The CD4+/CD8+ ratio and proliferation of T-lymphocytes in piglets fed diets supplemented with LY were increased compared to that of Control group at day 7 of the experiment (P 〈 0.05). In conclusion, dietary supplementation with both LY and SFY enhanced feed conversion, small intestinal development, and systemic immunity in early-weaned piglets, with better improvement in feed conversion by dietary supplementation with LY, while dietary supplementation with SFY was more effective in increasing systemic immune functions in early-weaned piglets.展开更多
This study was conducted to determine the effect of different forms of yeasts Saccharomyces cerevisiae supplementation on serum antioxidant capacity, mucosal secretory immunoglobulin A(s Ig A) secretions and gut mic...This study was conducted to determine the effect of different forms of yeasts Saccharomyces cerevisiae supplementation on serum antioxidant capacity, mucosal secretory immunoglobulin A(s Ig A) secretions and gut microbial populations in weaned piglets. A total of 96 piglets weaned at 14 d of age were randomly allotted to 4 dietary treatments:(1) basal diet without yeast(Control);(2) basal diet supplemented with 3.00 g kg–1 live yeast(LY);(3) basal diet supplemented with 2.66 g kg–1 heat-killed whole yeast(HKY); and(4) basal diet supplemented with 3.00 g kg–1 superfine yeast powders(SFY). Each treatment had 4 replicates(pens), with 6 piglets per replicate. The experiment lasted for 3 wk. At d 7 and 21 of the experiment, the samples of serum, mucosa and mesenteric lymph node(MLN) from jejunum, and digesta from the ileum and cecum were collected for determinations. Compared with the Control, dietary SFY supplementation increased serum superoxide dismutase(SOD) activity and lysozyme levels at d 7, and jejunum mucosal s Ig A secretions at d 21 of the experiment(P〈0.05). Dietary LY supplementation increased serum SOD activity and jejunum mucosal s Ig A secretions, but decreased serum malondialdehyde(MDA) concentration at d 7 and 21(P〈0.05). Piglets fed diets supplemented with LY and SFY had lower p H values and decreased numbers of Escherichia coli in the ileum and cecum contents at d 21 compared with the Control(P〈0.05). Moreover, the ratio of Lactobacilli to E. coli in the ileum and cecum contents was increased by dietary LY and SFY supplementations(P〈0.05). Collectively, different forms of yeasts, especially LY and SFY, may modulate body antioxidant capacity and enhance the intestinal immunity by regulation of secretions of mucosal s Ig A and reduction of pathogenic bacteria colonization, thus improving intestinal health of weaned piglets.展开更多
AIM To investigate the capacity of Saccharomyces cerevisiae(S. cerevisiae) and Saccharomyces boulardii(S. boulardii) yeasts to reverse or to treat acute stress-related intestinal dysmotility.METHODS Adult Swiss Webste...AIM To investigate the capacity of Saccharomyces cerevisiae(S. cerevisiae) and Saccharomyces boulardii(S. boulardii) yeasts to reverse or to treat acute stress-related intestinal dysmotility.METHODS Adult Swiss Webster mice were stressed for 1 h in a wire-mesh restraint to induce symptoms of intestinal dysmotility and were subsequently killed by cervical dislocation. Jejunal and colon tissue were excised and placed within a tissue perfusion bath in which S. cerevisiae, S. boulardii, or their supernatants were administered into the lumen. Video recordings of contractility and gut diameter changes were converted to spatiotemporal maps and the velocity, frequency, and amplitude of propagating contractile clusters(PCC) were measured. Motility pre- and post-treatment was compared between stressed animals and unstressed controls. RESULTS S. boulardii and S. cerevisiae helped to mediate the effects of stress on the small and large intestine. Restraint stress reduced jejunal transit velocity(mm/s)from 2.635 ± 0.316 to 1.644 ± 0.238, P < 0.001 and jejunal transit frequency(Hz) from 0.032 ± 0.008 to 0.016 ± 0.005, P < 0.001. Restraint stress increased colonic transit velocity(mm/s) from 0.864 ± 0.183 to 1.432 ± 0.329, P < 0.001 and frequency to a lesser degree. Luminal application of S. boulardii helped to restore jejunal and colonic velocity towards the unstressed controls; 1.833 ± 0.688 to 2.627 ± 0.664, P < 0.001 and 1.516 ± 0.263 to 1.036 ± 0.21, P < 0.001, respectively. S. cerevisiae also had therapeutic effects on the stressed gut, but was most apparent in the jejunum. S. cerevisiae increased PCC velocity in the stressed jejunum from 1.763 ± 0.397 to 2.017 ± 0.48, P = 0.0031 and PCC frequency from 0.016 ± 0.009 to 0.027 ± 0.007, P < 0.001. S. cerevisiae decreased colon PCC velocity from 1.647 ± 0.187 to 1.038 ± 0.222, P < 0.001. Addition of S. boulardii or S. cerevisiae supernatants also helped to restore motility to unstressed values in similar capacity. CONCLUSION There is a potential therapeutic role for S. cerevisiae and S. boulardii yeasts and their supernatants in the treatment of acute stress-related gut dysmotility.展开更多
For practical applications of bioethanol, the uses of both highly concentrated biomass materials and their effective fermentation by yeasts are indispensable in order to produce ethanol at low costs. However, as the s...For practical applications of bioethanol, the uses of both highly concentrated biomass materials and their effective fermentation by yeasts are indispensable in order to produce ethanol at low costs. However, as the saccharified products of those biomass generally contain abundant sugars, the yeasts are affected by the compounds and are inclined to decrease their physiological activities. In the process of fermentation, ethanol is gradually produced by the yeasts in the culture;the concentrated metabolic product also damages itself, and inhibition of the fermentation frequently occurs. The application of yeasts with high fermentative activities under stress pressures such as sugars and ethanol is thus desired for bioethanol production. In this study, various types of high-fermentative yeasts under stress pressures were isolated mainly from coastal waters in Japan and characterized. All yeast strains with high fermentative activities under 20% v/v ethanol were found to be Saccharomyces cerevisiae. The HK21 strain isolated from Tokyo Bay and identified as S. cerevisiae had the highest fermentation activity under 30% w/v sorbitol and under 20% v/v ethanol, and it produced approx. 70 g/l (9% v/v) ethanol from the 15% w/v glucose solution at 25 oC within 5 days.展开更多
In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for disc...In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for discovering groups of correlated genes potentially co-regulated or associated to the disease or conditions under investigation. Many clustering methods including k-means, fuzzy c-means, and hierarchical clustering have been widely used in literatures. Yet no comprehensive comparative study has been performed to evaluate the effectiveness of these methods, specially, in yeast saccharomyces cerevisiae. In this paper, these three gene clustering methods are compared. Classification accuracy and CPU time cost are employed for measuring performance of these algorithms. Our results show that hierarchical clustering outperforms k-means and fuzzy c-means clustering. The analysis provides deep insight to the complicated gene clustering problem of expression profile and serves as a practical guideline for routine microarray cluster analysis of gene expression.展开更多
<span style="font-family:Verdana;"><i><span style="font-family:Verdana;"><i></i></span></i></span><i><span style="font-family:Verdana;&...<span style="font-family:Verdana;"><i><span style="font-family:Verdana;"><i></i></span></i></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">Saccharomyces</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> <i>cerevisiae</i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> (baker’s yeast) and wheat flour are the conventional </span><span style="font-family:Verdana;">raw materials used in baking of bread. Wheat flour is preferred due to gluten proteins providing bread elasticity. Interest is shown in using flours from cassava mainly due to economic and health reasons. Cassava does not have gluten protein required for bread elasticity. A different type of yeast would be required to bake bread using cassava flour. We investigated the use of </span><span style="font-family:Verdana;">composite (cassava/wheat) flour technology for bread baking. We also isolated yeast strains from palm wine (SPW) and honey (SH) using enriche</span><span style="font-family:Verdana;">d media and evaluated their ability to produce acceptable cassava/wheat composite flour bread. Total of six yeast (3 each for palm wine and honey) strains identified as </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i></i></span></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">Saccharomyces</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> <i>cerevisiae</i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> were isolated. Two strains designated SPW and SH were selected and used for bread production. A commercial yeast strain (CY) was used as control. The major interest in this study included aroma, colour, taste, crust/texture, pore size, loaf weight and volume. Yeas</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t concentration</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">—</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">1% - 3%, and flour composite combinations of 90% wheat/10% cassava, 80% wheat/20% cassava, and 70% wheat/30% cassava were studied. The control was 100% wheat flour. Bread made from 90W:10C and 80W:20C compared favourably with bread made from 100% wheat flour. Loaf volumes were: SPW (850 cm</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">), CY (760 cm</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">) and SH (570 cm</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">), whilst loaf weights were: 243</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">g for SPW, 260</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">g for CY and 298 for SH. Pore size estimations were: SPW loaf porosity (0.765), CY (0.740) and SH (0.655). Yeast concentrations of 2.5% performed best when SPW was used to produce bread from 70W:30C composite loaf. SPW also displayed combined </span><span style="font-family:Verdana;">role of gas production, aroma and flavor development in wheat/cassava composite</span><span style="font-family:Verdana;"> bread. Mean performance of CY, SH and SPW on sensory parameters of bread produced, varied significantly (p < 0.05). Preference for aroma, colour, taste, crust/texture and general acceptability was in the order of SPW > CY > SH.</span></span></span></span>展开更多
基金supported by the National Key Research and Development Program of China(2021YFC2101303)the National Natural Science Foundation of China(U22A20424 and 22378048)+6 种基金the Major Scientific and Technological Projects of Sinopecthe Dalian Technology Talents Project for Distinguished Young Scholars(2021RJ03)the Yunnan Provincial Rural Energy Engineering Key Laboratory(2022KF003)the National Natural Science Foundation of Liaoning Province(2023-MS-110)the Liaoning Revitalization Talents Program(XLYC2202049)the Fundamental Research Funds for the Central Universities(DUT22LK22)the CAS Key Laboratory of Renewable Energy,Guangzhou Institute of Energy Conversion(E229kf0401)。
文摘Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyces cerevisiae strains.Development of industrial S.cerevisiae strains with high tolerance towards these inhibitors is thus critical for efficient lignocellulosic ethanol production.In this study,the acetic acid or furfural tolerance of different S.cerevisiae strains could be significantly enhanced after adaptive evolution via serial cultivation for 40 generations under stress conditions.The acetic acid-based adaptive strain SPSC01-TA9 produced 30.5 g·L^(-1)ethanol with a yield of 0.46 g·g^(-1)in the presence of 9 g·L^(-1)acetic acid,while the acetic acid/furfural-based adaptive strain SPSC01-TAF94 produced more ethanol of 36.2 g·L^(-1)with increased yield up to 0.49 g·g^(-1)in the presence of both 9 g·L^(-1)acetic acid and 4 g·L^(-1)furfural.Significant improvements were also observed during non-detoxified corn stover hydrolysate culture by SPSC01-TAF94,which achieved ethanol production and yield of 29.1 g·L^(-1)and 0.49 g·g^(-1),respectively,the growth and fermentation efficiency of acetic acid/furfural-based adaptive strain in hydrolysate was 95%higher than those of wildtype strains,indicating the acetic acid-and furfural-based adaptive evolution strategy could be an effective approach for improving lignocellulosic ethanol production.The adapted strains developed in this study with enhanced tolerance against acetic acid and furfural could be potentially contribute to economically feasible and sustainable lignocellulosic biorefinery.
基金supported by grants from Natural Science and Engineering Research Council(NSERC)of Canada Collaborative Research and Development(CRD)programNSERC Discovery program,Dairy Farmers of Manitoba,and Diamond V,USA,to EK and JCP。
文摘Background Subacute ruminal acidosis(SARA)is a common metabolic disorder of high yielding dairy cows,and it is associated with dysbiosis of the rumen and gut microbiome and host inflammation.This study evaluated the impact of two postbiotics from Saccharomyces cerevisiae fermentation products(SCFP)on rumen liquid associated microbiota of lactating dairy cows subjected to repeated grain-based SARA challenges.A total of 32 rumen cannulated cows were randomly assigned to 4 treatments from 4 weeks before until 12 weeks after parturition.Treatment groups included a Control diet or diets supplemented with postbiotics(SCFPa,14 g/d Original XPC;SCFPb-1X,19 g/d Nutri Tek;SCFPb-2X,38 g/d Nutri Tek,Diamond V,Cedar Rapids,IA,USA).Grain-based SARA challenges were conducted during week 5(SARA1)and week 8(SARA2)after parturition by replacing 20%DM of the base total mixed ration(TMR)with pellets containing 50%ground barley and 50%ground wheat.Total DNA from rumen liquid samples was subjected to V3–V416S r RNA gene amplicon sequencing.Characteristics of rumen microbiota were compared among treatments and SARA stages.Results Both SARA challenges reduced the diversity and richness of rumen liquid microbiota,altered the overall composition(β-diversity),and its predicted functionality including carbohydrates and amino acids metabolic pathways.The SARA challenges also reduced the number of significant associations among different taxa,number of hub taxa and their composition in the microbial co-occurrence networks.Supplementation with SCFP postbiotics,in particular SCFPb-2X,enhanced the robustness of the rumen microbiota.The SCFP supplemented cows had less fluctuation in relative abundances of community members when exposed to SARA challenges.The SCFP supplementation promoted the populations of lactate utilizing and fibrolytic bacteria,including members of Ruminococcaceae and Lachnospiraceae,and also increased the numbers of hub taxa during non-SARA and SARA stages.Supplementation with SCFPb-2X prevented the fluctuations in the abundances of hub taxa that were positively correlated with the acetate concentration,andα-andβ-diversity metrics in rumen liquid digesta.Conclusions Induction of SARA challenges reduced microbiota richness and diversity and caused fluctuations in major bacterial phyla in rumen liquid microbiota in lactating dairy cows.Supplementation of SCFP postbiotics could attenuate adverse effects of SARA on rumen liquid microbiota.
基金the Foundation DigestScience for its help in the breeding of the HLA-B27 transgenic animals and Lesaffre Company for the provision of S.cerevisiae CNCM I-3856.
文摘BACKGROUND Postoperative recurrence(POR)after ileocecal resection(ICR)affects most Crohn's disease patients within 3-5 years after surgery.Adherent-invasive Escherichia coli(AIEC)typified by the LF82 strain are pathobionts that are frequently detected in POR of Crohn's disease and have a potential role in the early stages of the disease pathogenesis.Saccharomyces cerevisiae CNCM I-3856 is a probiotic yeast reported to inhibit AIEC adhesion to intestinal epithelial cells and to favor their elimination from the gut.AIM To evaluate the efficacy of CNCM I-3856 in preventing POR induced by LF82 in an HLA-B27 transgenic(TgB27)rat model.METHODS Sixty-four rats[strain F344,38 TgB27,26 control non-Tg(nTg)]underwent an ICR at the 12th wk(W12)of life and were sacrificed at the 18th wk(W18)of life.TgB27 rats were challenged daily with oral administration of LF82(109 colony forming units(CFUs)/day(d),n=8),PBS(n=5),CNCM I-3856(109 CFUs/d,n=7)or a combination of LF82 and CNCM I-3856(n=18).nTg rats receiving LF82(n=5),PBS(n=5),CNCM I-3856(n=7)or CNCM I-3856 and LF82(n=9)under the same conditions were used as controls.POR was analyzed using macroscopic(from 0 to 4)and histologic(from 0 to 6)scores.Luminal LF82 quantifications were performed weekly for each animal.Adherent LF82 and inflammatory/regulatory cytokines were quantified in biopsies at W12 and W18.Data are expressed as the median with the interquartile range.RESULTS nTg animals did not develop POR.A total of 7/8(87%)of the TgB27 rats receiving LF82 alone had POR(macroscopic score≥2),which was significantly prevented by CNCM I-3856 administration[6/18(33%)TgB27 rats,P=0.01].Macroscopic lesions were located 2 cm above the anastomosis in the TgB27 rats receiving LF82 alone and consisted of ulcerations with a score of 3.5(2-4).Seven out of 18 TgB27 rats(39%)receiving CNCM I-3856 and LF82 had no macroscopic lesions.Compared to untreated TgB27 animals receiving LF82 alone,coadministration of CNCM I-3856 and LF82 significantly reduced the macroscopic[3.5(2-4)vs 1(0-3),P=0.002]and histological lesions by more than 50%[4.5(3.3-5.8)vs 2(1.3-3),P=0.003].The levels of adherent LF82 were correlated with anastomotic macroscopic scores in TgB27 rats(r=0.49,P=0.006),with a higher risk of POR in animals having high levels of luminal LF82(71.4%vs 25%,P=0.02).Administration of CNCM I-3856 significantly reduced the levels of luminal and adherent LF82,increased the production of interleukin(IL)-10 and decreased the production of IL-23 and IL-17 in TgB27 rats.CONCLUSION In a reliable model of POR induced by LF82 in TgB27 rats,CNCM I-3856 prevents macroscopic POR by decreasing LF82 infection and gut inflammation.
基金Supported by Heilongjiang Natural Science Foundation Joint Guide Project(LH2019C022)。
文摘Excessive fusel alcohol contents will cause the beer to produce off-flavors and cause dizziness and headaches.Reducing the contents of fusel alcohols in beer is very important to people's health.The excessive fusel alcohol contents in beer is a common problem in the industry.How to control the contents of fusel alcohols in a reasonable range is of great significance for improving beer quality.After one round of ultraviolet(UV)and one round of multifunctional plasma mutagenesis system(MPMS)mutagenesis,the yeast strains with lower fusel oil yield and more stablility could be screened.According to the relationship between the fusel alcohol Harris metabolic pathway of brewer's yeast and lactic acid metabolism,excellent strains were obtained by triple screening with lactic acid medium,calcium carbonate medium and 2,3,5-triphenyl tetrazolium chloride upper medium.The content of fusel alcohol in the finished beer fermentation test of screened strain Z43 was 52.1±0.142 mg•L^(-1),which was 43%lower than that of the starting strain,and other fermentation properties remained unchanged.After eight passages,it was verified that the strain was stable and heritable.These results showed that strain Z43 presented promising characteristics for use in the production of beer with a potentially low contents of fusel alcohols.
基金financially supported by grants from China Agriculture Research System(CARS-36)the Special Fund for Agro-scientific Research in the Public Interest(No.201403047)+1 种基金National Basic Research Program of China(2013CB127301 and 2013CB127304)Presidential Foundation of Guangdong Academy of Agricultural Sciences(201312)
文摘The present study was conducted to determine effects of different forms of yeast (Saccharomyces cerevisiae, strain Y200007) on the growth performance, intestinal development, and systemic immunity in early-weaned piglets. A total of 96 piglets (14-d old, initial average body weight of 4.5 kg) were assigned to 4 dietary treatments: (1) basa diet without yeast (Control); (2) basal diet supplemented with 3.00 g/kg live yeast (LY); (3) basal diet supplemented with 2.66 g/kg heat-killed whole yeast (HKY); and (4) basal diet supplemented with 3.00 g/kg superfine yeast powders (SFY). Diets and water were provided ad libitum to the piglets during 3-week experiment. Growth performance of piglets was measured weekly. Samples of blood and small intestine were collected at days 7 and 21 of experiment. Dietary supplementation with LY and SFY improved G:F of piglets at days ]-21 of the experiment (P 〈 0.05) compared to Control group. Serum concentrations of growth hormone (GH), triiodothyronine (T3), tetraiodothyronine (T4), and insulin growth factor 1 (iGF-1) in piglets at day 21 of the experiment were higher when fed diets supplemented with LY and SFY than those in Control group (P 〈 0.05). Compared to Control group, contents of serum urea nitrogen of piglets were reduced by the 3 yeast-supplemented diets (P 〈 0.05). Diets supplemented with LY increased villus height and villus-to-crypt ratio in duodenum and jejunum of piglets (P 〈 0.05) compared to other two groups at day 7 of the experiment. Feeding diets supplemented with LY and SFY increased (P 〈 0.05) serum concentrations of IgA, IL-2, and IL-6 levels in piglets compared to Control. The CD4+/CD8+ ratio and proliferation of T-lymphocytes in piglets fed diets supplemented with LY were increased compared to that of Control group at day 7 of the experiment (P 〈 0.05). In conclusion, dietary supplementation with both LY and SFY enhanced feed conversion, small intestinal development, and systemic immunity in early-weaned piglets, with better improvement in feed conversion by dietary supplementation with LY, while dietary supplementation with SFY was more effective in increasing systemic immune functions in early-weaned piglets.
基金financially supported by grants from the National Natural Science Foundation of China (31472112 and 31501967)the China Agriculture Research System (CARS-36)+4 种基金the Special Fund for Agro-scientific Research in the Public Interest, China (201403047)the Science and Technology Program of Guangdong Province, China (2013A061401020, 2013B020306004, 2016A020210041, 2016B070701013)the Hundred Outstanding Talents Training Program at Guangdong Province, Chinathe Science and Technology Program of Guangzhou,China (201607020035)the Presidential Foundation of Guangdong Academy of Agricultural Sciences, China (201612)
文摘This study was conducted to determine the effect of different forms of yeasts Saccharomyces cerevisiae supplementation on serum antioxidant capacity, mucosal secretory immunoglobulin A(s Ig A) secretions and gut microbial populations in weaned piglets. A total of 96 piglets weaned at 14 d of age were randomly allotted to 4 dietary treatments:(1) basal diet without yeast(Control);(2) basal diet supplemented with 3.00 g kg–1 live yeast(LY);(3) basal diet supplemented with 2.66 g kg–1 heat-killed whole yeast(HKY); and(4) basal diet supplemented with 3.00 g kg–1 superfine yeast powders(SFY). Each treatment had 4 replicates(pens), with 6 piglets per replicate. The experiment lasted for 3 wk. At d 7 and 21 of the experiment, the samples of serum, mucosa and mesenteric lymph node(MLN) from jejunum, and digesta from the ileum and cecum were collected for determinations. Compared with the Control, dietary SFY supplementation increased serum superoxide dismutase(SOD) activity and lysozyme levels at d 7, and jejunum mucosal s Ig A secretions at d 21 of the experiment(P〈0.05). Dietary LY supplementation increased serum SOD activity and jejunum mucosal s Ig A secretions, but decreased serum malondialdehyde(MDA) concentration at d 7 and 21(P〈0.05). Piglets fed diets supplemented with LY and SFY had lower p H values and decreased numbers of Escherichia coli in the ileum and cecum contents at d 21 compared with the Control(P〈0.05). Moreover, the ratio of Lactobacilli to E. coli in the ileum and cecum contents was increased by dietary LY and SFY supplementations(P〈0.05). Collectively, different forms of yeasts, especially LY and SFY, may modulate body antioxidant capacity and enhance the intestinal immunity by regulation of secretions of mucosal s Ig A and reduction of pathogenic bacteria colonization, thus improving intestinal health of weaned piglets.
基金Supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant awarded(to Kunze W)No.2014-05517
文摘AIM To investigate the capacity of Saccharomyces cerevisiae(S. cerevisiae) and Saccharomyces boulardii(S. boulardii) yeasts to reverse or to treat acute stress-related intestinal dysmotility.METHODS Adult Swiss Webster mice were stressed for 1 h in a wire-mesh restraint to induce symptoms of intestinal dysmotility and were subsequently killed by cervical dislocation. Jejunal and colon tissue were excised and placed within a tissue perfusion bath in which S. cerevisiae, S. boulardii, or their supernatants were administered into the lumen. Video recordings of contractility and gut diameter changes were converted to spatiotemporal maps and the velocity, frequency, and amplitude of propagating contractile clusters(PCC) were measured. Motility pre- and post-treatment was compared between stressed animals and unstressed controls. RESULTS S. boulardii and S. cerevisiae helped to mediate the effects of stress on the small and large intestine. Restraint stress reduced jejunal transit velocity(mm/s)from 2.635 ± 0.316 to 1.644 ± 0.238, P < 0.001 and jejunal transit frequency(Hz) from 0.032 ± 0.008 to 0.016 ± 0.005, P < 0.001. Restraint stress increased colonic transit velocity(mm/s) from 0.864 ± 0.183 to 1.432 ± 0.329, P < 0.001 and frequency to a lesser degree. Luminal application of S. boulardii helped to restore jejunal and colonic velocity towards the unstressed controls; 1.833 ± 0.688 to 2.627 ± 0.664, P < 0.001 and 1.516 ± 0.263 to 1.036 ± 0.21, P < 0.001, respectively. S. cerevisiae also had therapeutic effects on the stressed gut, but was most apparent in the jejunum. S. cerevisiae increased PCC velocity in the stressed jejunum from 1.763 ± 0.397 to 2.017 ± 0.48, P = 0.0031 and PCC frequency from 0.016 ± 0.009 to 0.027 ± 0.007, P < 0.001. S. cerevisiae decreased colon PCC velocity from 1.647 ± 0.187 to 1.038 ± 0.222, P < 0.001. Addition of S. boulardii or S. cerevisiae supernatants also helped to restore motility to unstressed values in similar capacity. CONCLUSION There is a potential therapeutic role for S. cerevisiae and S. boulardii yeasts and their supernatants in the treatment of acute stress-related gut dysmotility.
文摘For practical applications of bioethanol, the uses of both highly concentrated biomass materials and their effective fermentation by yeasts are indispensable in order to produce ethanol at low costs. However, as the saccharified products of those biomass generally contain abundant sugars, the yeasts are affected by the compounds and are inclined to decrease their physiological activities. In the process of fermentation, ethanol is gradually produced by the yeasts in the culture;the concentrated metabolic product also damages itself, and inhibition of the fermentation frequently occurs. The application of yeasts with high fermentative activities under stress pressures such as sugars and ethanol is thus desired for bioethanol production. In this study, various types of high-fermentative yeasts under stress pressures were isolated mainly from coastal waters in Japan and characterized. All yeast strains with high fermentative activities under 20% v/v ethanol were found to be Saccharomyces cerevisiae. The HK21 strain isolated from Tokyo Bay and identified as S. cerevisiae had the highest fermentation activity under 30% w/v sorbitol and under 20% v/v ethanol, and it produced approx. 70 g/l (9% v/v) ethanol from the 15% w/v glucose solution at 25 oC within 5 days.
基金supported by the National Natural Science Foundation of China under Grant No. 30525030,60701015, and 60736029
文摘In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for discovering groups of correlated genes potentially co-regulated or associated to the disease or conditions under investigation. Many clustering methods including k-means, fuzzy c-means, and hierarchical clustering have been widely used in literatures. Yet no comprehensive comparative study has been performed to evaluate the effectiveness of these methods, specially, in yeast saccharomyces cerevisiae. In this paper, these three gene clustering methods are compared. Classification accuracy and CPU time cost are employed for measuring performance of these algorithms. Our results show that hierarchical clustering outperforms k-means and fuzzy c-means clustering. The analysis provides deep insight to the complicated gene clustering problem of expression profile and serves as a practical guideline for routine microarray cluster analysis of gene expression.
文摘<span style="font-family:Verdana;"><i><span style="font-family:Verdana;"><i></i></span></i></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">Saccharomyces</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> <i>cerevisiae</i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> (baker’s yeast) and wheat flour are the conventional </span><span style="font-family:Verdana;">raw materials used in baking of bread. Wheat flour is preferred due to gluten proteins providing bread elasticity. Interest is shown in using flours from cassava mainly due to economic and health reasons. Cassava does not have gluten protein required for bread elasticity. A different type of yeast would be required to bake bread using cassava flour. We investigated the use of </span><span style="font-family:Verdana;">composite (cassava/wheat) flour technology for bread baking. We also isolated yeast strains from palm wine (SPW) and honey (SH) using enriche</span><span style="font-family:Verdana;">d media and evaluated their ability to produce acceptable cassava/wheat composite flour bread. Total of six yeast (3 each for palm wine and honey) strains identified as </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i></i></span></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">Saccharomyces</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> <i>cerevisiae</i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> were isolated. Two strains designated SPW and SH were selected and used for bread production. A commercial yeast strain (CY) was used as control. The major interest in this study included aroma, colour, taste, crust/texture, pore size, loaf weight and volume. Yeas</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t concentration</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">—</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">1% - 3%, and flour composite combinations of 90% wheat/10% cassava, 80% wheat/20% cassava, and 70% wheat/30% cassava were studied. The control was 100% wheat flour. Bread made from 90W:10C and 80W:20C compared favourably with bread made from 100% wheat flour. Loaf volumes were: SPW (850 cm</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">), CY (760 cm</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">) and SH (570 cm</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">), whilst loaf weights were: 243</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">g for SPW, 260</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">g for CY and 298 for SH. Pore size estimations were: SPW loaf porosity (0.765), CY (0.740) and SH (0.655). Yeast concentrations of 2.5% performed best when SPW was used to produce bread from 70W:30C composite loaf. SPW also displayed combined </span><span style="font-family:Verdana;">role of gas production, aroma and flavor development in wheat/cassava composite</span><span style="font-family:Verdana;"> bread. Mean performance of CY, SH and SPW on sensory parameters of bread produced, varied significantly (p < 0.05). Preference for aroma, colour, taste, crust/texture and general acceptability was in the order of SPW > CY > SH.</span></span></span></span>