Long-term changes of composition, sources and burial fluxes of TOC (total organic carbon) in sediments of the central Yellow Sea mud area and their possible affecting factors are discussed in this paper. Firstly, si...Long-term changes of composition, sources and burial fluxes of TOC (total organic carbon) in sediments of the central Yellow Sea mud area and their possible affecting factors are discussed in this paper. Firstly, similarity analysis is employed to confirm that the carbon burial features resulted from two collected cores are typical in the central Yellow Sea mud area where YSWC (Yellow Sea Warm Current) is prevalent. On this basis, the burial flux of TOC here was considered to be 235.5-488.4 pmol/(cm^2.a) since the first industrial revolution, accounting for about 70%-90% among burial fluxes of TC (total carbon) in the sediments. Compared TOC/TC ratio in the two cores with that in other marine sediments worldwide, we suggest that the growth of calcareous/non-calcareous organisms and dissolution of IC (inorganic carbon) are important factors controlling the TOC/TC ratio in sediment. Results of two-end mixed model based on fi13C data indicate that marine-derived organic carbon (OCa) is the main part among total burial organic carbon which accounts for a ratio over 85%. Due to the high TOC/TC ratio in the two cores, TC in the sediments also mainly exists as OCa, and the proportion of OCa is about 60%-80%. Away from the shore and relatively high primary production in upper waters are the main reasons that OCa is predominant among all burial OC in sediments of the central Yellow Sea mud area. Burial of OC in this mud area is probably mainly influenced by the human activities. Although the economic development during the late 19th century caused by the first industrial revolution in China did not obviously increase the TOC burial fluxes in the sediments, the rise of industry and agriculture after the founding of new China has clearly increased the TOC burial flux since 1950s. Otherwise, we also realize that among TC burial fluxes, TIC account for about 10%-30% in sediments of the central Yellow Sea mud area, so its burial could not be simply ignored here. Distinct from TOC burial, long-term TIC burial fluxes variations relate with climate changes more closely: the East Asian summer monsoon may influence the strength of the Huanghe River (Yellow River) flood, which could further affect the transport of terrestrial IC from land to the central Yellow Sea as well as the burial of these IC in the sediments.展开更多
Based on high-resolution analysis to a 280-cm long sediment core obtained from the muddy area in the central Yellow Sea, we examined the provenance of muddy sediments and discussed the changing marine sedimentary envi...Based on high-resolution analysis to a 280-cm long sediment core obtained from the muddy area in the central Yellow Sea, we examined the provenance of muddy sediments and discussed the changing marine sedimentary environment since the middle Holocene. The results indicated that fine-grained sediments in the muddy area were mainly derived from the Huanghe(Yellow River) and Changjiang(Yangtze River) with considerable stepwise variations during the past 6.6 kyr. The Yellow Sea Warm Current was initiated at 6 kyr when the sea level was high together with the enhanced East Asian Winter Monsoon. These in combination established the framework of shelf circulation in the Yellow Sea that began to trap the river-derived fine-grained sediments. From 4.9 kyr to 2.8 kyr, both the Kushiro Current and East Asian Monsoon were significantly weakened, reducing the delivery of Changjiang sediments to the muddy area. As a result, the sediments were mainly originated from the Huanghe. From 2.8 kyr to 1.5 kyr the continuously weakened East Asian Winter Monsoon and enhanced Yellow Sea Warm Current entrapped more fine-grain sediments. Whereas the enhanced East Asian Winter Monsoon and the human caused increase in sediment load of the Huanghe since 1.5 kyr, and direct delivery of Huanghe sediments to the Yellow Sea during 1128–1855 AD might dominated the sedimentation in the study area. The stepwise variations of the sediment provenance and composition of the Central Yellow Sea muddy sediments are of importance to understanding the formation of muddy deposit in the central Yellow Sea and the associated variations of marine environment since the middle Holocene.展开更多
Newly acquired high-resolution seismic profiles reveal a nearshore and an of fshore mud depocenter of f the southern Shandong Peninsula in the Yellow Sea.The nearshore depocenter is distributed in bands along the sout...Newly acquired high-resolution seismic profiles reveal a nearshore and an of fshore mud depocenter of f the southern Shandong Peninsula in the Yellow Sea.The nearshore depocenter is distributed in bands along the south coast of Shandong Peninsula.The of fshore depocenter is part of the distal subaqueous deltaic lobe,which deposited around the southeastern tip of the Shandong Peninsula.Between the two depocenters is a linear depression.The mud deposits directly overlie the postglacial transgressive surface and can be divided into lower and upper units by the Holocene maximum flooding surface.The nearshore and off shore units display different seismic structures.The lower unit of the nearshore deposit exhibits basal onlap,whereas the upper unit is characterized by progradation.The lower and upper units of the off shore deposit display distinct acoustic features.The lower unit has low-angle aggradation with internal reflectors generally dipping seaward and truncated by the Holocene maximum flooding surface,whereas the upper unit is characterized by aggradation and progradation landward rather than seaward.Results of geochemistry analysis of QDZ03 sediments and mineral analysis of WHZK01 sediments suggest that the nearshore deposit and the lower unit of the of fshore deposit are derived from the proximal coastal sediments of the Shandong Peninsula and the Huanghe(Yellow) River sediments.The upper unit of the of fshore deposit is mainly Huanghe River-derived.The lower unit of the mud deposit represents a post-glacial transgressive system tract according to dates of core QDZ03,and the upper unit represents a highstand system tract from middle Holocene to the present.These results will be of great significance to further understanding of the transportation of the Huanghe River sediments into the Yellow Sea and the spatial distribution of the subaqueous delta.展开更多
Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using fie...Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.展开更多
染料是一种结构复杂、具有剧毒的有机化合物,对人体毒害作用大。本研究制备了一种基于活性赤泥(activated red mud,ARM)和聚合吡咯(polypyrrole,PPy)的吸附剂,并应用于水溶液中染料的吸附脱除。通过吸附实验研究了溶液pH、吸附剂种类、...染料是一种结构复杂、具有剧毒的有机化合物,对人体毒害作用大。本研究制备了一种基于活性赤泥(activated red mud,ARM)和聚合吡咯(polypyrrole,PPy)的吸附剂,并应用于水溶液中染料的吸附脱除。通过吸附实验研究了溶液pH、吸附剂种类、吸附时间、添加量和染料初始浓度对吸附过程的影响,并对ARM-PPy复合材料进行分析表征,阐明了活性黄染料-145(RYD-145)的吸附作用机制。RYD-145在ARM-PPy上的吸附过程与三种吸附等温线关联极好(R2>0.99),其中Langmuir吸附最合适。根据Langmuir吸附模型的拟合结果,RYD-145的最大吸附量是442.5 mg/g。热力学研究表明,RYD-145分子在ARM-PPy的吸附过程中,焓变(ΔH)和熵变(ΔS)均增加,这表明该过程为吸热过程,且表面RYD-145分子排列具有随机性。研究表明,ARM-PPy具有高效处理阴离子和阳离子染料污染废水的能力,且具有较好的成本效益。展开更多
北黄海泥质区具有地理位置独特、陆源物质供应丰富、沉积环境复杂等特点,为了更好地理解全球变化背景下对北黄海“源-汇”过程的影响,对北黄海泥质区边缘BS24岩芯沉积物进行了AMS14C测年、粒度、黏土粒级稀土元素和重矿物组成特征分析,...北黄海泥质区具有地理位置独特、陆源物质供应丰富、沉积环境复杂等特点,为了更好地理解全球变化背景下对北黄海“源-汇”过程的影响,对北黄海泥质区边缘BS24岩芯沉积物进行了AMS14C测年、粒度、黏土粒级稀土元素和重矿物组成特征分析,以判识沉积物的来源、沉积环境特征,并进一步探讨北黄海的沉积演化过程。研究表明,BS24岩芯轻重稀土元素具有明显分异,稀土元素的球粒陨石标准化配分曲线右倾,轻稀土元素富集,重稀土元素亏损,上陆壳标准化的δEu和δCe无明显异常。稀土元素的变化趋势较为一致,以170 cm为界,上段波动幅度较大,下段含量相对稳定。岩芯中共鉴定出30种重矿物,以黑云母(37.46%)和自生黄铁矿(22.39%)最为常见,辉石和氧化铁矿物及不稳定矿物含量低。黏土粒级及极细砂组分特征指示,BS24岩芯晚全新世以来主要接受黄河物质的沉积。BS24岩芯自生黄铁矿含量的变化可能指示了北黄海冷水团强度的变化。650 cal. a BP以来,北黄海冷水团强度增强,自生黄铁矿含量降低;650~1 560 cal. a BP期间,研究区处于还原环境,北黄海冷水团强度减弱,营造的缺乏对流性环境为自生黄铁矿的富集提供了有利条件。展开更多
基金The National Key Basic Research Program of China under contract No.2010CB428902the United Program of National Natural Science Foundation of China and Shandong Province under contract No.U1406403the Special Fund for Basic Scientific Research Business of Central Public Research Institutes under contrast No.20603022013003
文摘Long-term changes of composition, sources and burial fluxes of TOC (total organic carbon) in sediments of the central Yellow Sea mud area and their possible affecting factors are discussed in this paper. Firstly, similarity analysis is employed to confirm that the carbon burial features resulted from two collected cores are typical in the central Yellow Sea mud area where YSWC (Yellow Sea Warm Current) is prevalent. On this basis, the burial flux of TOC here was considered to be 235.5-488.4 pmol/(cm^2.a) since the first industrial revolution, accounting for about 70%-90% among burial fluxes of TC (total carbon) in the sediments. Compared TOC/TC ratio in the two cores with that in other marine sediments worldwide, we suggest that the growth of calcareous/non-calcareous organisms and dissolution of IC (inorganic carbon) are important factors controlling the TOC/TC ratio in sediment. Results of two-end mixed model based on fi13C data indicate that marine-derived organic carbon (OCa) is the main part among total burial organic carbon which accounts for a ratio over 85%. Due to the high TOC/TC ratio in the two cores, TC in the sediments also mainly exists as OCa, and the proportion of OCa is about 60%-80%. Away from the shore and relatively high primary production in upper waters are the main reasons that OCa is predominant among all burial OC in sediments of the central Yellow Sea mud area. Burial of OC in this mud area is probably mainly influenced by the human activities. Although the economic development during the late 19th century caused by the first industrial revolution in China did not obviously increase the TOC burial fluxes in the sediments, the rise of industry and agriculture after the founding of new China has clearly increased the TOC burial flux since 1950s. Otherwise, we also realize that among TC burial fluxes, TIC account for about 10%-30% in sediments of the central Yellow Sea mud area, so its burial could not be simply ignored here. Distinct from TOC burial, long-term TIC burial fluxes variations relate with climate changes more closely: the East Asian summer monsoon may influence the strength of the Huanghe River (Yellow River) flood, which could further affect the transport of terrestrial IC from land to the central Yellow Sea as well as the burial of these IC in the sediments.
基金financially supported by National Natural Science Foundation of China (Nos.41525021 and U1606401)。
文摘Based on high-resolution analysis to a 280-cm long sediment core obtained from the muddy area in the central Yellow Sea, we examined the provenance of muddy sediments and discussed the changing marine sedimentary environment since the middle Holocene. The results indicated that fine-grained sediments in the muddy area were mainly derived from the Huanghe(Yellow River) and Changjiang(Yangtze River) with considerable stepwise variations during the past 6.6 kyr. The Yellow Sea Warm Current was initiated at 6 kyr when the sea level was high together with the enhanced East Asian Winter Monsoon. These in combination established the framework of shelf circulation in the Yellow Sea that began to trap the river-derived fine-grained sediments. From 4.9 kyr to 2.8 kyr, both the Kushiro Current and East Asian Monsoon were significantly weakened, reducing the delivery of Changjiang sediments to the muddy area. As a result, the sediments were mainly originated from the Huanghe. From 2.8 kyr to 1.5 kyr the continuously weakened East Asian Winter Monsoon and enhanced Yellow Sea Warm Current entrapped more fine-grain sediments. Whereas the enhanced East Asian Winter Monsoon and the human caused increase in sediment load of the Huanghe since 1.5 kyr, and direct delivery of Huanghe sediments to the Yellow Sea during 1128–1855 AD might dominated the sedimentation in the study area. The stepwise variations of the sediment provenance and composition of the Central Yellow Sea muddy sediments are of importance to understanding the formation of muddy deposit in the central Yellow Sea and the associated variations of marine environment since the middle Holocene.
基金Supported by the National Natural Science Foundation of China(Nos.41306063,41330964)the China Geological Survey(Nos.GZH201200506,GZH200900501,DD20160145)
文摘Newly acquired high-resolution seismic profiles reveal a nearshore and an of fshore mud depocenter of f the southern Shandong Peninsula in the Yellow Sea.The nearshore depocenter is distributed in bands along the south coast of Shandong Peninsula.The of fshore depocenter is part of the distal subaqueous deltaic lobe,which deposited around the southeastern tip of the Shandong Peninsula.Between the two depocenters is a linear depression.The mud deposits directly overlie the postglacial transgressive surface and can be divided into lower and upper units by the Holocene maximum flooding surface.The nearshore and off shore units display different seismic structures.The lower unit of the nearshore deposit exhibits basal onlap,whereas the upper unit is characterized by progradation.The lower and upper units of the off shore deposit display distinct acoustic features.The lower unit has low-angle aggradation with internal reflectors generally dipping seaward and truncated by the Holocene maximum flooding surface,whereas the upper unit is characterized by aggradation and progradation landward rather than seaward.Results of geochemistry analysis of QDZ03 sediments and mineral analysis of WHZK01 sediments suggest that the nearshore deposit and the lower unit of the of fshore deposit are derived from the proximal coastal sediments of the Shandong Peninsula and the Huanghe(Yellow) River sediments.The upper unit of the of fshore deposit is mainly Huanghe River-derived.The lower unit of the mud deposit represents a post-glacial transgressive system tract according to dates of core QDZ03,and the upper unit represents a highstand system tract from middle Holocene to the present.These results will be of great significance to further understanding of the transportation of the Huanghe River sediments into the Yellow Sea and the spatial distribution of the subaqueous delta.
基金financially supported by the National Nature Science Foundation of China under Grant No.41372333,41172158China Geological Survey(grant No.1212011220123)
文摘Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.
文摘染料是一种结构复杂、具有剧毒的有机化合物,对人体毒害作用大。本研究制备了一种基于活性赤泥(activated red mud,ARM)和聚合吡咯(polypyrrole,PPy)的吸附剂,并应用于水溶液中染料的吸附脱除。通过吸附实验研究了溶液pH、吸附剂种类、吸附时间、添加量和染料初始浓度对吸附过程的影响,并对ARM-PPy复合材料进行分析表征,阐明了活性黄染料-145(RYD-145)的吸附作用机制。RYD-145在ARM-PPy上的吸附过程与三种吸附等温线关联极好(R2>0.99),其中Langmuir吸附最合适。根据Langmuir吸附模型的拟合结果,RYD-145的最大吸附量是442.5 mg/g。热力学研究表明,RYD-145分子在ARM-PPy的吸附过程中,焓变(ΔH)和熵变(ΔS)均增加,这表明该过程为吸热过程,且表面RYD-145分子排列具有随机性。研究表明,ARM-PPy具有高效处理阴离子和阳离子染料污染废水的能力,且具有较好的成本效益。
文摘北黄海泥质区具有地理位置独特、陆源物质供应丰富、沉积环境复杂等特点,为了更好地理解全球变化背景下对北黄海“源-汇”过程的影响,对北黄海泥质区边缘BS24岩芯沉积物进行了AMS14C测年、粒度、黏土粒级稀土元素和重矿物组成特征分析,以判识沉积物的来源、沉积环境特征,并进一步探讨北黄海的沉积演化过程。研究表明,BS24岩芯轻重稀土元素具有明显分异,稀土元素的球粒陨石标准化配分曲线右倾,轻稀土元素富集,重稀土元素亏损,上陆壳标准化的δEu和δCe无明显异常。稀土元素的变化趋势较为一致,以170 cm为界,上段波动幅度较大,下段含量相对稳定。岩芯中共鉴定出30种重矿物,以黑云母(37.46%)和自生黄铁矿(22.39%)最为常见,辉石和氧化铁矿物及不稳定矿物含量低。黏土粒级及极细砂组分特征指示,BS24岩芯晚全新世以来主要接受黄河物质的沉积。BS24岩芯自生黄铁矿含量的变化可能指示了北黄海冷水团强度的变化。650 cal. a BP以来,北黄海冷水团强度增强,自生黄铁矿含量降低;650~1 560 cal. a BP期间,研究区处于还原环境,北黄海冷水团强度减弱,营造的缺乏对流性环境为自生黄铁矿的富集提供了有利条件。