期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Transcriptome Sequencing for Sugar and Flavonoid Metabolism in Prunus persica‘Jinxiangyu’
1
作者 CHEN Wei-feng WANG Chun-fa +2 位作者 HUANG Jia LI Du ZHANG Liang-bo 《Agricultural Science & Technology》 CAS 2024年第2期18-25,共8页
In this study,high performance liquid chromatography(HPLC)and RNA-seq transcriptome sequencing were used to study the changes in soluble sugar components and flavonoids in Prunus persica‘Jinxiangyu’at different deve... In this study,high performance liquid chromatography(HPLC)and RNA-seq transcriptome sequencing were used to study the changes in soluble sugar components and flavonoids in Prunus persica‘Jinxiangyu’at different developmental stages(20–90 d after flowering)and screen the key genes regulating the formation of soluble sugar and flavonoids in the fruits.The results showed that 60–85 d after flowering was the key stage of quality formation of Prunus persica‘Jinxiangyu’,and the content of soluble sugar,soluble solid,fructose,and sucrose in the fruit increased significantly during this period.The sugar content of ripe fruits was mainly fructose and sucrose.The content of kaempferol glycoside was low in the fruit.Quercetin glycoside content was higher in the young fruit stage and decreased with fruit maturity.There were no anthocyanin compounds in the fruit.The expression levels of genes involved in flavonoid metabolism(ANS,DFR,F3H,FLS,4CL1,etc.)were low in the fruit.A total of 181 differentially expressed genes were identified during fruit development to participate in five sugar metabolism pathways,among which the SDH gene had a higher expression level,which continuously rised in the later stage of fruit development.It mainly promoted the accumulation of fructose content in the later stage of fruit development.The expression levels of SPS1,SS,and SS1 genes were continuously up-regulated,which played a key role in sucrose regulation.The higher expression levels of SUS3 and INVA genes in the early stage of fruit development promoted the degradation of sucrose. 展开更多
关键词 yellow peach Sugar metabolism Flavonoid compounds Differential gene expression
下载PDF
Model of gas exchange dynamics for modified-atmosphere packages containing fresh produce
2
作者 刘颖 李云飞 +1 位作者 王如竹 田平海 《Journal of Southeast University(English Edition)》 EI CAS 2005年第3期314-318,共5页
A model for modified-atmosphere packaging (MAP) systems containing fruits and vegetables was developed.The computer simulation was performed to predict the gas mass concentrations inside the packages and was success... A model for modified-atmosphere packaging (MAP) systems containing fruits and vegetables was developed.The computer simulation was performed to predict the gas mass concentrations inside the packages and was successfully verified by experiments with yellow peaches at 5,15 and 25 ℃ using two types of packaging films.A Michaelis-Menten type respiration model with noncompetitive inhibition mechanism due to CO2 was adopted while the respiration rates were measured with an improved permeable system method suitable for either steady or unsteady state.The applicability of the model in the design of MAP systems was demonstrated with a calculation to evaluate film specification and equilibrium concentrations of O2 and CO2 in the package containing yellow peaches. 展开更多
关键词 gas exchange dynamics modified-atmosphere package respiration rate yellow peach
下载PDF
Molecular Taxonomy of Conogethes punctiferalis and Conogethes pinicolalis(Lepidoptera: Crambidae) Based on Mitochondrial DNA Sequences 被引量:6
3
作者 WANG Jing ZHANG Tian-tao +3 位作者 WANG Zhen-ying HE Kang-lai LIU Yong LI Jing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第9期1982-1989,共8页
Conogethes punctiferalis(Guenée)(Lepidoptera: Crambidae) was originally considered as one species with fruit-feeding type(FFT) and pinaceae-feeding type(PFT), but it has subsequently been divided into tw... Conogethes punctiferalis(Guenée)(Lepidoptera: Crambidae) was originally considered as one species with fruit-feeding type(FFT) and pinaceae-feeding type(PFT), but it has subsequently been divided into two different species of Conogethes punctiferalis and Conogethes pinicolalis. The relationship between the two species was investigated by phylogenetic reconstruction using maximum-likelihood(ML) parameter estimations. The phylogenetic tree and network were constructed based upon sequence data from concatenation of three genes of mitochondrial cytochrome c oxidase subunits I, II and cytochrome b which were derived from 118 samples of C. punctiferalis and 24 samples of C. pinicolalis. The phylogenetic tree and network showed that conspecific sequences were clustering together despite intraspecific variability. Here we report the results of a combined analysis of mitochondrial DNA sequences from three genes and morphological data representing powerful evidence that C. pinicolalisand C. punctiferalis are significantly different. 展开更多
关键词 yellow peach moth Conogethes punctiferalis Conogethes pinicolalis mitochondrial DNA sequence
下载PDF
Multiomics analysis provides new insights into the regulatory mechanism of carotenoid biosynthesis in yellow peach peel
4
作者 Jiarui Zheng Xiaoyan Yang +7 位作者 Jiabao Ye Dongxue Su Lina Wang Yongling Liao Weiwei Zhang Qijian Wang Qiangwen Chen Feng Xu 《Molecular Horticulture》 2023年第1期81-97,共17页
Carotenoids,as natural tetraterpenes,play a pivotal role in the yellow coloration of peaches and contribute to human dietary health.Despite a relatively clear understanding of the carotenoid biosynthesis pathway,the r... Carotenoids,as natural tetraterpenes,play a pivotal role in the yellow coloration of peaches and contribute to human dietary health.Despite a relatively clear understanding of the carotenoid biosynthesis pathway,the regulatory mechanism of miRNAs involved in carotenoid synthesis in yellow peaches remain poorly elucidated.This study investigated a total of 14 carotenoids and 40 xanthophyll lipids,including six differentially accumulated carotenoids:violaxanthin,neoxanthin,lutein,zeaxanthin,cryptoxanthin,and(E/Z)-phytoene.An integrated analysis of RNA-seq,miRNA-seq and degradome sequencing revealed that miRNAs could modulate structural genes such as PSY2,CRTISO,ZDS1,CHYB,VDE,ZEP,NCED1,NCED3 and the transcription factors NAC,ARF,WRKY,MYB,and bZIP,thereby participating in carotenoid biosynthesis and metabolism.The authenticity of miRNAs and target gene was corroborated through quantitative real-time PCR.Moreover,through weighted gene coexpression network analysis and a phylogenetic evolutionary study,coexpressed genes and MYB transcription factors potentially implicated in carotenoid synthesis were identified.The results of transient expression experiments indicated that mdm-miR858 inhibited the expression of PpMYB9 through targeted cleavage.Building upon these findings,a regulatory network governing miRNA-mediated carotenoid synthesis was proposed.In summary,this study comprehensively identified miRNAs engaged in carotenoid biosynthesis and their putative target genes,thus enhancing the understanding of carotenoid accumulation and regulatory mechanism in yellow peach peel and expanding the gene regulatory network of carotenoid synthesis. 展开更多
关键词 yellow peach peel CAROTENOID MIRNA MYB DEGRADOME
原文传递
Effects of photoperiod and temperature on diapause induction in Conogethes punctiferalis (Lepidoptera: Pyralidae) 被引量:4
5
作者 Li-Rong Xu Xinzhi Ni +1 位作者 Zhen-Ying Wang Kang-Lai He 《Insect Science》 SCIE CAS CSCD 2014年第5期556-563,共8页
The yellow peach moth, Conogethes punctiferalis (Guenee), a multivoltine species that overwinters as diapausing larvae, is one of the most serious insect pests on maize in China. Effect of photoperiod and temperatur... The yellow peach moth, Conogethes punctiferalis (Guenee), a multivoltine species that overwinters as diapausing larvae, is one of the most serious insect pests on maize in China. Effect of photoperiod and temperature on larval diapause was examined under empirical laboratory conditions. Short-day treatments caused larval diapause at 25℃, and the critical photoperiod was between 12 and 13 h (or 12 h 51 min) light per day. No sensitive instar was identified for diapause induction under alternated short- (L : D 11 : 13 h) and long-day (L : D 14 : 10 h) treatments at different larval stages. However, accumulative treatment of three instars and 10 d under short-day treatment was required for the induction of 50% larval diapause. All larvae entered diapause at 20℃, whereas less than 3% did so at 30℃, irrespective of the long- or short-day treatment. Furthermore, under the short-day treatment, more than 90% of larvae went into diapause with temperatures ≤ 25℃, but less than 17% did so at 28℃. In contrast, under the long-day treatment, less than 19% of larvae went into diapause with temperatures ≥23 ℃. The forward shift (5℃) of critical temperature under the long-day regime demonstrated the compensatory effect of temperature and photoperiod on diapause induction. In conclusion, C. punctiferalis had a temperature-dependent type Ⅰ photoperiodic diapause response; there was no sensitive instar for diapause determination, but the photoperiodic accumulation time countermeasures both of the short-day cycles and the number ofinstars exposed, and the photoperiodic diapause response, was a temperature-compensated phenomenon. 展开更多
关键词 Conogethes punctiferalis diapause induction PHOTOPERIOD sensitive larval instar temperature dependence yellow peach moth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部