BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or to...BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process.展开更多
AIM:To analyze the differences and relevance of Yes-associated protein (YAP) and survivin, and to explore the correlation and signifi cance of their expression in gastric carcinoma and precancerous lesions.METHODS: Th...AIM:To analyze the differences and relevance of Yes-associated protein (YAP) and survivin, and to explore the correlation and signifi cance of their expression in gastric carcinoma and precancerous lesions.METHODS: The PV9000 immunohistochemical method was used to detect the expression of YAP and survivin in 98 cases of normal gastric mucosa, 58 intestinal metaplasia (IM), 32 dysplasia and 98 gastric carcinoma.RESULTS: The positive rates of YAP in dysplasia (37.5%) and gastric carcinoma (48.0%) were significantly higher than that in normal gastric mucosa (13.3%), P<0.01. The positive rates of survivin in IM (53.4%), dysplasia (59.4%) and gastric carcinoma (65.3%) were significantly higher than in normal gastric mucosa (11.2%), P<0.01. Survivin expression gradually increased from 41.7% in well differentiated adenocarcinoma through 58.3% in moderately differentiated adenocarcinoma to 75.6% in poorly differentiated adenocarcinoma, with significant Rank correlation, rk=0.279, P<0.01. The positive rate of survivin in gastric carcinoma of diffused type (74.6%) was significantly higher than that in intestinal type (51.3%), P<0.05. In gastric carcinoma with lymph node metastasis (76.9%), the positive rate of survivin was signifi cantly higher than that in the group without lymph node metastasis (41.2%), P<0.01. In 98 cases of gastric carcinoma, the expression of YAP and of survivin were positively correlated, rk=0.246, P<0.01.CONCLUSION: YAP may play an important role as a carcinogenic factor and may induce survivin expression. Detecting both markers together may help in early diagnosis of gastric carcinoma.展开更多
AIM:To reveal whether and how Yes-associated protein(YAP)promotes the occurrence of subretinal fibrosis in agerelated macular degeneration(AMD).METHODS:Cobalt chloride(Co Cl2)was used in primary human umbilical vein e...AIM:To reveal whether and how Yes-associated protein(YAP)promotes the occurrence of subretinal fibrosis in agerelated macular degeneration(AMD).METHODS:Cobalt chloride(Co Cl2)was used in primary human umbilical vein endothelial cells(HUVECs)to induce hypoxia in vitro.Eight-week-old male C57 BL/6 J mice weighing 19-25 g were used for a choroidal neovascularization(CNV)model induced by laser photocoagulation in vivo.Expression levels of YAP,phosphorylated YAP,mesenchymal markers[αsmooth muscle actin(α-SMA),vimentin,and Snail],and endothelial cell markers(CD31 and zonula occludens 1)were measured by Western blotting,quantitative real-time PCR,and immunofluorescence microscopy.Small molecules YC-1(Lificiguat,a specific inhibitor of hypoxia-inducible factor 1α),CA3(CIL56,an inhibitor of YAP),and XMU-MP-1(an inhibitor of Hippo kinase MST1/2,which activates YAP)were used to explore the underlying mechanism.RESULTS:Co Cl2 increased expression of mesenchymal markers,decreased expression of endothelial cell markers,and enhanced the ability of primary HUVECs to proliferate and migrate.YC-1 suppressed hypoxia-induced endothelialto-mesenchymal transition(End MT).Moreover,hypoxia promoted total expression,inhibited phosphorylation,and enhanced the transcriptional activity of YAP.XMU-MP-1 enhanced hypoxia-induced End MT,whereas CA3 elicited the opposite effect.Expression of YAP,α-SMA,and vimentin were upregulated in the laser-induced CNV model.However,silencing of YAP by vitreous injection of small interfering RNA targeting YAP could reverse these changes.CONCLUSION:The findings reveal a critical role of the hypoxia-inducible factor-1α(HIF-1α)/YAP signaling axis in End MT and provide a new therapeutic target for treatment of subretinal fibrosis in AMD.展开更多
BACKGROUND The Hippo signaling pathway regulates organ size by regulating cell proliferation and apoptosis with terminal effectors including Yes-associated protein-1(YAP-1).Dysregulation in Hippo pathway has been prop...BACKGROUND The Hippo signaling pathway regulates organ size by regulating cell proliferation and apoptosis with terminal effectors including Yes-associated protein-1(YAP-1).Dysregulation in Hippo pathway has been proposed as one of the therapeutic targets in hepatocarcinogenesis.The levels of reactive oxygen species(ROS)increase during the progression from early to advanced hepatocellular carcinoma(HCC).AIM To study the activation of YAP-1 by ROS-induced damage in HCC and the involved signaling pathway.METHODS The expression of YAP-1 in HCC cells(Huh-7,HepG2,and SNU-761)was quantified using real-time polymerase chain reaction and immunoblotting.Human HCC cells were treated with H2O2,which is a major component of ROS in living organisms,and with either YAP-1 small interfering RNA(siRNA)or control siRNA.To investigate the role of YAP-1 in HCC cells under oxidative stress,MTS assays were performed.Immunoblotting was performed to evaluate the signaling pathway responsible for the activation of YAP-1.Eighty-eight surgically resected frozen HCC tissue samples and 88 nontumor liver tissue samples were used for gene expression analyses.RESULTS H2O2 treatment increased the mRNA and protein expression of YAP-1 in HCC cells(Huh-7,HepG2,and SNU-761).Suppression of YAP-1 using siRNA transfection resulted in a significant decrease in tumor proliferation during H2O2 treatment both in vitro and in vivo(both P<0.05).The oncogenic action of YAP-1 occurred via the activation of the c-Myc pathway,leading to the upregulation of components of the unfolded protein response(UPR),including 78-kDa glucoseregulated protein and activating transcription factor-6(ATF-6).The YAP-1 mRNA levels in human HCC tissues were upregulated by 2.6-fold compared with those in nontumor tissues(P<0.05)and were positively correlated with the ATF-6 Levels(Pearson’s coefficient=0.299;P<0.05).CONCLUSION This study shows a novel connection between YAP-1 and the UPR through the c-Myc pathway during oxidative stress in HCC.The ROS-induced activation of YAP-1 via the c-Myc pathway,which leads to the activation of the UPR pathway,might be a therapeutic target in HCC.展开更多
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in many diseases, including hepatocellular carcinoma (HCC). Autophagy is a metabolic pathway that facilitates cancer cell survival in response to stress. ...BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in many diseases, including hepatocellular carcinoma (HCC). Autophagy is a metabolic pathway that facilitates cancer cell survival in response to stress. The relationship between autophagy and the lncRNA-activated by transforming growth factor beta (lncRNA-ATB) in HCC remains unknown. AIM To explore the influence of lncRNA-ATB in regulating autophagy in HCC cells and the underlying mechanism. METHODS In the present study, we evaluated lncRNA-ATB expression in tumor and adjacent non-tumor tissues from 72 HCC cases by real-time PCR. We evaluated the role of lncRNA-ATB in the proliferation and clonogenicity of HCC cells in vitro. The effect of lncRNA-ATB on autophagy was determined using a LC3-GFP reporter and transmission electron microscopy. Furthermore, the mechanism by which lncRNA-ATB regulates autophagy was explored by immunofluorescence staining, RNA immunoprecipitation (RIP), and Western blot. RESULTS The expression of lncRNA-ATB was higher in HCC tissues than in normal liver tissues, and lncRNA-ATB expression was positively correlated with tumor size, TNM stage, and poorer survival of patients with HCC. Moreover, ectopic overexpression of lncRNA-ATB promoted cell proliferation and clonogenicnity of HCC cells in vitro. LncRNA-ATB promoted autophagy by activating Yesassociated protein (YAP). Moreover, lncRNA-ATB interacted with autophagy-related protein 5 (ATG5) mRNA and increased ATG5 expression. CONCLUSION LncRNA-ATB regulates autophagy by activating YAP and increasing ATG5 expression. Our data demonstrate a novel function for lncRNA-ATB in autophagy and suggest that lncRNA-ATB plays an important role in HCC.展开更多
Pancreatic ductal adenocarcinoma(PDAC) remains a deadly disease with no efficacious treatment options. PDAC incidence is projected to increase, which may be caused at least partially by the obesity epidemic. Significa...Pancreatic ductal adenocarcinoma(PDAC) remains a deadly disease with no efficacious treatment options. PDAC incidence is projected to increase, which may be caused at least partially by the obesity epidemic. Significantly enhanced efforts to prevent or intercept this cancer are clearly warranted. Oncogenic KRAS mutations are recognized initiating events in PDAC development, however, they are not entirely sufficient for the development of fully invasive PDAC.Additional genetic alterations and/or environmental, nutritional, and metabolic signals, as present in obesity, type-2 diabetes mellitus, and inflammation, are required for full PDAC formation. We hypothesize that oncogenic KRAS increases the intensity and duration of the growth-promoting signaling network.Recent exciting studies from different laboratories indicate that the activity of the transcriptional co-activators Yes-associated protein(YAP) and WW-domaincontaining transcriptional co-activator with PDZ-binding motif(TAZ) play a critical role in the promotion and maintenance of PDAC operating as key downstream target of KRAS signaling. While initially thought to be primarily an effector of the tumor-suppressive Hippo pathway, more recent studies revealed that YAP/TAZ subcellular localization and co-transcriptional activity is regulated by multiple upstream signals. Overall, YAP has emerged as a central node of transcriptional convergence in growth-promoting signaling in PDAC cells. Indeed, YAP expression is an independent unfavorable prognostic marker for overall survival of PDAC. In what follows, we will review studies implicating YAP/TAZ in pancreatic cancer development and consider different approaches to target these transcriptional regulators.展开更多
A recent publication highlights the importance of high yes-associated protein(YAP) expressing cells in liver regeneration following partial hepatectomy.Although the names of the cell populations described in these art...A recent publication highlights the importance of high yes-associated protein(YAP) expressing cells in liver regeneration following partial hepatectomy.Although the names of the cell populations described in these articles [hybrid periportal hepatocytes(HybHP) or epithelial-mesenchymal transition(EMT)-reprogrammed hepatocytes] are not identical, they all express high levels of YAP.We hypothesize that the HybHP and EMT-reprogrammed hepatocytes might be a similar cell population. Hippo signaling is the primary pathway that regulates YAP activity. According to the contribution of these two types of cells to liver regeneration and the high YAP expression, Hippo-YAP signaling activation may be a common regulatory pathway experienced by cells undergoing dedifferentiation and reactivating proliferative activity during liver regeneration.Although no evidence has shown that HybHP cells contribute to hepatocellular carcinoma in mouse models, we can not rule out the possibility that these highly regenerative cells can further develop into tumor cells when they acquire mutations caused by viral infection or other risk factors like alcohol. The detailed mechanistic insight of the regulation of YAP expression and activity in HybHP(or other types of cells contributing to liver regeneration) is unknown. We hypothesize that liver regeneration under various conditions will eventually lead to divergent consequences, likely due to the duration of YAP activation regulated by Hippo-large tumor suppressor 1 and 2 pathway in a context-and cell typedependent manner.展开更多
Objectives: To evaluate the difference of YAP-positive expression between GC and adjacent tissues, as well as the association of elevated YAP expression with clinicopathological features of GC. Methods: PubMed, Embase...Objectives: To evaluate the difference of YAP-positive expression between GC and adjacent tissues, as well as the association of elevated YAP expression with clinicopathological features of GC. Methods: PubMed, Embase, Web of Science databases and the Chinese National Knowledge Infrastructure (CNKI) were searched from inception up to December 2018. The pooled ORs and corresponding 95% CIs were used to assess the strength of association. The heterogeneity among eligible studies was evaluated by the Q-test and I2 values. The sensitivity analysis was performed by sequential omission of individual studies. Moreover, Begg’s test and Egger’s test were used to evaluate publication bias. Results: A total of 2229 patients from 16 studies were included in this meta-analysis. The results showed that positive YAP expression was closely correlated with GC but not adjacent non-tumor tissue (OR = 8.08, 95% CI = 4.41 - 14.80). Additionally, YAP overexpression was found to be associated with more advanced TNM stage (OR = 2.68, 95% CI = 1.61 - 4.48), deeper invasion depth (OR = 2.05, 95% CI = 1.32 - 3.19), and lymph node metastasis (OR = 1.95, 95% CI = 1.29 - 2.96). No significant correlation was observed between YAP overexpression and degree of differentiation (OR = 1.17, 95% CI = 0.63 - 2.16), as well as gender of patients (OR = 1.12, 95% CI = 0.91 - 1.37) or tumor size (OR = 1.11, 95% CI = 0.82 - 1.49) of gastric cancer. Conclusions: This meta-analysis demonstrated that YAP might be a promising diagnostic marker and even a therapeutic target for gastric cancer.展开更多
The constitutive androstane receptor(CAR, NR3 I1) belongs to nuclear receptor superfamily.It was reported that CAR agonist TCPOBOP induces hepatomegaly but the underlying mechanism remains largely unknown. Yes-associa...The constitutive androstane receptor(CAR, NR3 I1) belongs to nuclear receptor superfamily.It was reported that CAR agonist TCPOBOP induces hepatomegaly but the underlying mechanism remains largely unknown. Yes-associated protein(YAP) is a potent regulator of organ size. The aim of this study is to explore the role of YAP in CAR activation-induced hepatomegaly and liver regeneration.TCPOBOP-induced CAR activation on hepatomegaly and liver regeneration was evaluated in wildtype(WT) mice, liver-specific YAP-deficient mice, and partial hepatectomy(PHx) mice. The results demonstrate that TCPOBOP can increase the liver-to-body weight ratio in wild-type mice and PHx mice.Hepatocytes enlargement around central vein(CV) area was observed, meanwhile hepatocytesproliferation was promoted as evidenced by the increased number of KI67+cells around portal vein(PV)area. The protein levels of YAP and its downstream targets were upregulated in TCPOBOP-treated mice and YAP translocation can be induced by CAR activation. Co-immunoprecipitation results suggested a potential proteineprotein interaction of CAR and YAP. However, CAR activation-induced hepatomegaly can still be observed in liver-specific YAP-deficient(Yape/e) mice. In summary, CAR activation promotes hepatomegaly and liver regeneration partially by inducing YAP translocation and interaction with YAP signaling pathway, which provides new insights to further understand the physiological functions of CAR.展开更多
Background Oral squamous cell carcinoma (OSCC) is one of the most common malignancies in the oral and maxillofacial region. Yes-associated protein 1 (YAP1) has been implicated as a bona fide oncogene in solid tumo...Background Oral squamous cell carcinoma (OSCC) is one of the most common malignancies in the oral and maxillofacial region. Yes-associated protein 1 (YAP1) has been implicated as a bona fide oncogene in solid tumors. We seek to elucidate the role of YAP1 in OSCC tissue. Methods We identified YAP1 gene and protein overexpression in 30 OSCC patients and 10 normal oral mucosa tissues by immunohistochemistry, Western blotting and reverse transcription polymerase chain reaction (RT-PCR). Results In the normal oral mucosa by immunohistochemical staining, YAP1 mainly located in both the cytoplasm and nucleus mainly the nuclei of the basal cells. In OSCC, the expression of YAP1 translocated from the nucleus to cytoplasm YAP1 being mainly located in both the cytoplasm and nucleus of the adjacent mucosa. The expression of YAP1 gradual increased in normal oral mucosa, tumor adjacent mucosa and low grade, middle grade, high grade OSCC tissue by Western blotting. Significant difference was found between the expressions of the normal oral mucosa and OSCC tissue (P 〈0.05). The coincidence was detected between the normal oral mucosa and OSCC tissue by RT-PCR (P 〈0.05). Conclusions YAP1 is involved in the carcinogenesis and development of OSCC. There is a transformation between nucleus and cytoplasm.展开更多
Magnesium alloy(Mg alloy)has attracted massive attention in the potential applications of cardiovascular stents because of its good biocompatibility and degradability.However,whether and how the Mg alloy induces infla...Magnesium alloy(Mg alloy)has attracted massive attention in the potential applications of cardiovascular stents because of its good biocompatibility and degradability.However,whether and how the Mg alloy induces inflammation in endothelial cells remains unclear.In the present work,we investigated the activation of Yes-associated protein(YAP)upon Mg alloy stimuli and unveiled the transcriptional function in Mg alloy-induced inflammation.Quantitative RT–PCR,western blotting and immunofluorescence staining showed that Mg alloy inhibited the Hippo pathway to facilitate nuclear shuttling and activation of YAP in human coronary artery endothelial cells(HCAECs).Chromatin immunoprecipitation followed sequencing was carried out to explore the transcriptional function of YAP in Mg alloy-derived inflammation.This led to the observation that nuclear YAP further bonded to the promoter region of inflammation transcription factors and co-transcription factors.This binding event activated their transcription and modified mRNA methylation of inflammation-related genes through regulating the expression of N6-methyladenosine modulators(METTL3,METTL14,FTO and WTAP).This then promoted inflammation-related gene expression and aggravated inflammation in HCAECs.In YAP deficiency cells,Mg alloy-induced inflammation was reduced.Collectively,our data suggest that YAP contributes to the Mg alloy-derived inflammation in HCAECs and may provide a potential therapeutic target that alleviates inflammation after Mg alloy stent implantation.展开更多
Background:The Nuclear Dbf2-related(NDR1)kinase is a member of the NDR/LATS family,which was a supplementary of Hippo pathway.However,whether NDR1 could inhibit glioblastoma(GBM)growth by phosphorylating Yes-associate...Background:The Nuclear Dbf2-related(NDR1)kinase is a member of the NDR/LATS family,which was a supplementary of Hippo pathway.However,whether NDR1 could inhibit glioblastoma(GBM)growth by phosphorylating Yes-associated protein(YAP)remains unknown.Meanwhile,the role of NDR1 in GBM was not clear.This study aimed to investigate the role of NDR1-YAP pathway in GBM.Methods:Bioinformation analysis and immunohistochemistry(IHC)were performed to identify the expression of NDR1 in GBM.The effect of NDR1 on cell proliferation and cell cycle was analyzed utilizing CCK-8,clone formation,immunofluorescence and flow cytometry,respectively.In addition,the xenograft tumor model was established as well.Protein interaction was examined by Coimmunoprecipitation and immunofluorescence to observe co-localization.Results:Bioinformation analysis and IHC of our patients’tumor tissues showed that expression of NDR1 in tumor tissue was relatively lower than that in normal tissues and was positively related to a lower survival rate.NDR1 could markedly reduce the proliferation and colony formation of U87 and U251.Furthermore,the results of flow cytometry showed that NDR1 led to cell cycle arrest at the G1 phase.Tumor growth was also inhibited in xenograft nude mouse models in NDR1-overexpression group.Western blotting and immunofluorescence showed that NDR1 could integrate with and phosphorylate YAP at S127 site.Meanwhile,NDR1 could mediate apoptosis process.Conclusion:In summary,our findings point out that NDR1 functions as a tumor suppressor in GBM.NDR1 is identified as a novel regulator of YAP,which gives us an in-depth comprehension of the Hippo signaling pathway.展开更多
Background and aim:The transcriptional co-activator Yes-associated protein-1(YAP1)has been impli-cated as an oncogene and is overexpressed in different kinds of human cancers,especially hepatocellular carcinoma(HCC).H...Background and aim:The transcriptional co-activator Yes-associated protein-1(YAP1)has been impli-cated as an oncogene and is overexpressed in different kinds of human cancers,especially hepatocellular carcinoma(HCC).However,the role of YAP1 has not been reported in residual/recurrent HCC after transarterial chemoembolization(TACE).Our aim is to determine whether YAP1 is overexpressed in the residual/recurrent HCC after TACE.Methods:A total of 105 tumor tissues from 71 patients including 30 cases of primary HCC without prior treatment,35 cases of residual/recurrent HCC post TACE,and 6 cases of hepatoblastoma were included in the immunohistochemical study.YAP1 immunoreactivity was blindly scored as 0,1+,2+or 3+in density and percentages of positive cells.Results:About 33.3%(10/30)of primary HCC without prior treatment showed 2+of YAP1 immunore-activity.While 82.8%(29/35)of residual/recurrent HCCs after TACE treatment displayed 2-3+of YAP1 immunoreactivity,which was significantly higher compared to primary HCC without prior treatment(P=0.0002).YAP1 immunoreactivity was moderately to strongly positive(2-3+)in 100%of the hep-atoblastoma,particularly in the embryonal components(3+in 100%cases).Conclusions:YAP1 is significantly upregulated in the residual/recurrent HCCs post TACE treatment,suggesting that YAP1 may serve as a sensitive diagnostic marker and a treatment target for residual/recurrent HCC post TACE.展开更多
BACKGROUND Glucocorticoid modulatory element-binding protein 1(GMEB1),which has been identified as a transcription factor,is a protein widely expressed in various tissues.Reportedly,the dysregulation of GMEB1 is linke...BACKGROUND Glucocorticoid modulatory element-binding protein 1(GMEB1),which has been identified as a transcription factor,is a protein widely expressed in various tissues.Reportedly,the dysregulation of GMEB1 is linked to the genesis and development of multiple cancers.AIM To explore GMEB1’s biological functions in hepatocellular carcinoma(HCC)and figuring out the molecular mechanism.METHODS GMEB1 expression in HCC tissues was analyzed employing the StarBase database.Immunohistochemical staining,Western blotting and quantitative realtime PCR were conducted to examine GMEB1 and Yes-associate protein 1(YAP1)expression in HCC cells and tissues.Cell counting kit-8 assay,Transwell assay and flow cytometry were utilized to examine HCC cell proliferation,migration,invasion and apoptosis,respectively.The JASPAR database was employed for predicting the binding site of GMEB1 with YAP1 promoter.Dual-luciferase reporter gene assay and chromatin immunoprecipitation-qPCR were conducted to verify the binding relationship of GMEB1 with YAP1 promoter region.RESULTS GMEB1 was up-regulated in HCC cells and tissues,and GMEB1 expression was correlated to the tumor size and TNM stage of HCC patients.GMEB1 overexpression facilitated HCC cell multiplication,migration,and invasion,and suppressed the apoptosis,whereas GMEB1 knockdown had the opposite effects.GMEB1 bound to YAP1 promoter region and positively regulated YAP1 expression in HCC cells.CONCLUSION GMEB1 facilitates HCC malignant proliferation and metastasis by promoting the transcription of the YAP1 promoter region.展开更多
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s...Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.展开更多
In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the prolifer...In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the proliferation of splenocytes in response to mitogens.The splenocytes and mesenteric lymphocytes activated by T-cell mitogens(Con A and anti-CD3/CD28 antibodies)released high levels of IL-2 but low levels of IFN-γand IL-17A.The release of IL-4 was unaffected by MRJPs.Additionally,splenocytes and mesenteric lymphocytes activated by LPS were prevented by MRJPs at the same dose as that required for producing IL-1βand IL-6,two pro-inflammatory cytokines.The production of IL-1β,IL-6,and IFN-γwas negatively associated with estrogen levels,which were higher in the MRJP-treated animals than in the control group.Analysis of the gut microbiota revealed that feeding mice 250 mg/kg of MRJPs maintained the stability of the natural intestinal microflora of mice.Additionally,the LEf Se analysis identified biomarkers in the MRJP-treated mice,including Prevotella,Bacillales,Enterobacteriales,Gammaproteobacteria,Candidatus_Arthromitus,and Shigella.Our results showed that MRJPs are important components of royal jelly that modulate host immunity and hormone levels and help maintain gut microbiota stability.展开更多
Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate...Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.展开更多
The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully unders...The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully understood.ApoE exists as three common isoforms(ApoE2,ApoE3,and ApoE4),which differ in two amino acid residues.Traditionally,ApoE binds cholesterol and phospholipids and ApoE isoforms display diffe rent affinities for their receptors,lipids transport and distribution in the brain and periphery.The role of ApoE in the human depends on ApoE isoforms,brain regions,aging,and neural injury.APOE E4 is the strongest genetic risk factor for sporadic Alzheimer's disease,considering its role in influencing amyloid-beta metabolism.The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood,but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration,lipids metabolism,neurovascular unit,and microglial function.Consistent with the biological function of ApoE,ApoE4 isoform significantly alte red signaling pathways associated with cholesterol homeostasis,transport,and myelination.Also,the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis.The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE,brain function,and memory,from a molecular to a clinical level.APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes.Not only in learning and memory but also in neuro psychiatric symptoms that occur in a premorbid condition.Cla rifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms,particularly suicidal ideation in Alzheimer's disease patients,may be useful for elucidating also the underlying pathophysiological process and its prognosis.Also,the effects of anti-amyloid-beta drugs,recently approved for the treatment of Alzheimer's disease,could be influenced by the APOE genotype.展开更多
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves t...The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).展开更多
This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers....This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.A total of 7201-d-old yellow-feathered maleb roilers were allocated to 9 treatments with 8 replicate cages of 10 birds per cage.The dietary treatments were consisted of a basal diet(contained 79.6 mg Fe kg^(-1))supplemented with 0,20,40,60,80,160,320,640,and 1,280 mg Fe kg^(-1)in the form of FeSO_(4)·7H_(2)O.Compared with the birds in the control group,birds supplemented with 20mg Fe kg^(-1)had higher average daily gain(ADG)(P<0.0001).Adding 640 and 1,280 mg Fe kg^(-1)significantly decreased ADG(P<0.0001)and average daily feed intake(ADFI)(P<0.0001)compared with supplementation of 20mg Fe kg^(-1).Malondialdehyde(MDA)concentration in plasma and duodenum increased linearly(P<0.0001),but MDA concentration in liver and jejunum increased linearly(P<0.05)or quadratically(P<0.05)with increased dietary Fe concentration.The villus height(VH)in duodenum and jejunum,and the ratio of villus height to crypt depth(V/C)in duodenum decreased linearly(P?0.05)as dietary Feincreased.As dietary Fe increased,the jejunal relative mRNA abundance of claudin-1 decreased linearly(P=0.001),but the jejunal relative mRNA abundance of zona occludens-1(ZO-1)and occludin decreased linearly(P?0.05)or quadratically(P?0.05).Compared with the supplementation of 20 mg Fe kg^(-1),the supplementation of640 mg Fe kg^(-1)or higher increased(P?0.05)MDA concentrations in plasma,duodenum,and jejunum,decreased VH in the duodenum and jejunum,and the addition of 1,280 mg Fe kg^(-1)reduced(P?0.05)the jejunal tight junction protein(claudin-1,ZO-1,occludin)mRNA abundance.In summary,640 mg of supplemental Fe kg^(-1)or greater was associated with decreased growth performance,increased oxidative stress,disrupted intestinal morphology,and reduced mRNA expression of jejunal tight junction protein.展开更多
基金Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China,No.2022YFA1105800the National Natural Science Foundation of China,No.81970940.
文摘BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process.
基金Supported by National Natural Science Foundation of China,No.30371607
文摘AIM:To analyze the differences and relevance of Yes-associated protein (YAP) and survivin, and to explore the correlation and signifi cance of their expression in gastric carcinoma and precancerous lesions.METHODS: The PV9000 immunohistochemical method was used to detect the expression of YAP and survivin in 98 cases of normal gastric mucosa, 58 intestinal metaplasia (IM), 32 dysplasia and 98 gastric carcinoma.RESULTS: The positive rates of YAP in dysplasia (37.5%) and gastric carcinoma (48.0%) were significantly higher than that in normal gastric mucosa (13.3%), P<0.01. The positive rates of survivin in IM (53.4%), dysplasia (59.4%) and gastric carcinoma (65.3%) were significantly higher than in normal gastric mucosa (11.2%), P<0.01. Survivin expression gradually increased from 41.7% in well differentiated adenocarcinoma through 58.3% in moderately differentiated adenocarcinoma to 75.6% in poorly differentiated adenocarcinoma, with significant Rank correlation, rk=0.279, P<0.01. The positive rate of survivin in gastric carcinoma of diffused type (74.6%) was significantly higher than that in intestinal type (51.3%), P<0.05. In gastric carcinoma with lymph node metastasis (76.9%), the positive rate of survivin was signifi cantly higher than that in the group without lymph node metastasis (41.2%), P<0.01. In 98 cases of gastric carcinoma, the expression of YAP and of survivin were positively correlated, rk=0.246, P<0.01.CONCLUSION: YAP may play an important role as a carcinogenic factor and may induce survivin expression. Detecting both markers together may help in early diagnosis of gastric carcinoma.
基金National Natural Science Foundation of China(No.81970817,No.81873680)。
文摘AIM:To reveal whether and how Yes-associated protein(YAP)promotes the occurrence of subretinal fibrosis in agerelated macular degeneration(AMD).METHODS:Cobalt chloride(Co Cl2)was used in primary human umbilical vein endothelial cells(HUVECs)to induce hypoxia in vitro.Eight-week-old male C57 BL/6 J mice weighing 19-25 g were used for a choroidal neovascularization(CNV)model induced by laser photocoagulation in vivo.Expression levels of YAP,phosphorylated YAP,mesenchymal markers[αsmooth muscle actin(α-SMA),vimentin,and Snail],and endothelial cell markers(CD31 and zonula occludens 1)were measured by Western blotting,quantitative real-time PCR,and immunofluorescence microscopy.Small molecules YC-1(Lificiguat,a specific inhibitor of hypoxia-inducible factor 1α),CA3(CIL56,an inhibitor of YAP),and XMU-MP-1(an inhibitor of Hippo kinase MST1/2,which activates YAP)were used to explore the underlying mechanism.RESULTS:Co Cl2 increased expression of mesenchymal markers,decreased expression of endothelial cell markers,and enhanced the ability of primary HUVECs to proliferate and migrate.YC-1 suppressed hypoxia-induced endothelialto-mesenchymal transition(End MT).Moreover,hypoxia promoted total expression,inhibited phosphorylation,and enhanced the transcriptional activity of YAP.XMU-MP-1 enhanced hypoxia-induced End MT,whereas CA3 elicited the opposite effect.Expression of YAP,α-SMA,and vimentin were upregulated in the laser-induced CNV model.However,silencing of YAP by vitreous injection of small interfering RNA targeting YAP could reverse these changes.CONCLUSION:The findings reveal a critical role of the hypoxia-inducible factor-1α(HIF-1α)/YAP signaling axis in End MT and provide a new therapeutic target for treatment of subretinal fibrosis in AMD.
文摘BACKGROUND The Hippo signaling pathway regulates organ size by regulating cell proliferation and apoptosis with terminal effectors including Yes-associated protein-1(YAP-1).Dysregulation in Hippo pathway has been proposed as one of the therapeutic targets in hepatocarcinogenesis.The levels of reactive oxygen species(ROS)increase during the progression from early to advanced hepatocellular carcinoma(HCC).AIM To study the activation of YAP-1 by ROS-induced damage in HCC and the involved signaling pathway.METHODS The expression of YAP-1 in HCC cells(Huh-7,HepG2,and SNU-761)was quantified using real-time polymerase chain reaction and immunoblotting.Human HCC cells were treated with H2O2,which is a major component of ROS in living organisms,and with either YAP-1 small interfering RNA(siRNA)or control siRNA.To investigate the role of YAP-1 in HCC cells under oxidative stress,MTS assays were performed.Immunoblotting was performed to evaluate the signaling pathway responsible for the activation of YAP-1.Eighty-eight surgically resected frozen HCC tissue samples and 88 nontumor liver tissue samples were used for gene expression analyses.RESULTS H2O2 treatment increased the mRNA and protein expression of YAP-1 in HCC cells(Huh-7,HepG2,and SNU-761).Suppression of YAP-1 using siRNA transfection resulted in a significant decrease in tumor proliferation during H2O2 treatment both in vitro and in vivo(both P<0.05).The oncogenic action of YAP-1 occurred via the activation of the c-Myc pathway,leading to the upregulation of components of the unfolded protein response(UPR),including 78-kDa glucoseregulated protein and activating transcription factor-6(ATF-6).The YAP-1 mRNA levels in human HCC tissues were upregulated by 2.6-fold compared with those in nontumor tissues(P<0.05)and were positively correlated with the ATF-6 Levels(Pearson’s coefficient=0.299;P<0.05).CONCLUSION This study shows a novel connection between YAP-1 and the UPR through the c-Myc pathway during oxidative stress in HCC.The ROS-induced activation of YAP-1 via the c-Myc pathway,which leads to the activation of the UPR pathway,might be a therapeutic target in HCC.
文摘BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in many diseases, including hepatocellular carcinoma (HCC). Autophagy is a metabolic pathway that facilitates cancer cell survival in response to stress. The relationship between autophagy and the lncRNA-activated by transforming growth factor beta (lncRNA-ATB) in HCC remains unknown. AIM To explore the influence of lncRNA-ATB in regulating autophagy in HCC cells and the underlying mechanism. METHODS In the present study, we evaluated lncRNA-ATB expression in tumor and adjacent non-tumor tissues from 72 HCC cases by real-time PCR. We evaluated the role of lncRNA-ATB in the proliferation and clonogenicity of HCC cells in vitro. The effect of lncRNA-ATB on autophagy was determined using a LC3-GFP reporter and transmission electron microscopy. Furthermore, the mechanism by which lncRNA-ATB regulates autophagy was explored by immunofluorescence staining, RNA immunoprecipitation (RIP), and Western blot. RESULTS The expression of lncRNA-ATB was higher in HCC tissues than in normal liver tissues, and lncRNA-ATB expression was positively correlated with tumor size, TNM stage, and poorer survival of patients with HCC. Moreover, ectopic overexpression of lncRNA-ATB promoted cell proliferation and clonogenicnity of HCC cells in vitro. LncRNA-ATB promoted autophagy by activating Yesassociated protein (YAP). Moreover, lncRNA-ATB interacted with autophagy-related protein 5 (ATG5) mRNA and increased ATG5 expression. CONCLUSION LncRNA-ATB regulates autophagy by activating YAP and increasing ATG5 expression. Our data demonstrate a novel function for lncRNA-ATB in autophagy and suggest that lncRNA-ATB plays an important role in HCC.
文摘Pancreatic ductal adenocarcinoma(PDAC) remains a deadly disease with no efficacious treatment options. PDAC incidence is projected to increase, which may be caused at least partially by the obesity epidemic. Significantly enhanced efforts to prevent or intercept this cancer are clearly warranted. Oncogenic KRAS mutations are recognized initiating events in PDAC development, however, they are not entirely sufficient for the development of fully invasive PDAC.Additional genetic alterations and/or environmental, nutritional, and metabolic signals, as present in obesity, type-2 diabetes mellitus, and inflammation, are required for full PDAC formation. We hypothesize that oncogenic KRAS increases the intensity and duration of the growth-promoting signaling network.Recent exciting studies from different laboratories indicate that the activity of the transcriptional co-activators Yes-associated protein(YAP) and WW-domaincontaining transcriptional co-activator with PDZ-binding motif(TAZ) play a critical role in the promotion and maintenance of PDAC operating as key downstream target of KRAS signaling. While initially thought to be primarily an effector of the tumor-suppressive Hippo pathway, more recent studies revealed that YAP/TAZ subcellular localization and co-transcriptional activity is regulated by multiple upstream signals. Overall, YAP has emerged as a central node of transcriptional convergence in growth-promoting signaling in PDAC cells. Indeed, YAP expression is an independent unfavorable prognostic marker for overall survival of PDAC. In what follows, we will review studies implicating YAP/TAZ in pancreatic cancer development and consider different approaches to target these transcriptional regulators.
基金National Natural Science Foundation of China,No.81502304Science and Technology Projects of Quzhou,No.2018K20Suitable Technology Promotion Center New Technology and Product Research and Development Projects,No.2019329288
文摘A recent publication highlights the importance of high yes-associated protein(YAP) expressing cells in liver regeneration following partial hepatectomy.Although the names of the cell populations described in these articles [hybrid periportal hepatocytes(HybHP) or epithelial-mesenchymal transition(EMT)-reprogrammed hepatocytes] are not identical, they all express high levels of YAP.We hypothesize that the HybHP and EMT-reprogrammed hepatocytes might be a similar cell population. Hippo signaling is the primary pathway that regulates YAP activity. According to the contribution of these two types of cells to liver regeneration and the high YAP expression, Hippo-YAP signaling activation may be a common regulatory pathway experienced by cells undergoing dedifferentiation and reactivating proliferative activity during liver regeneration.Although no evidence has shown that HybHP cells contribute to hepatocellular carcinoma in mouse models, we can not rule out the possibility that these highly regenerative cells can further develop into tumor cells when they acquire mutations caused by viral infection or other risk factors like alcohol. The detailed mechanistic insight of the regulation of YAP expression and activity in HybHP(or other types of cells contributing to liver regeneration) is unknown. We hypothesize that liver regeneration under various conditions will eventually lead to divergent consequences, likely due to the duration of YAP activation regulated by Hippo-large tumor suppressor 1 and 2 pathway in a context-and cell typedependent manner.
文摘Objectives: To evaluate the difference of YAP-positive expression between GC and adjacent tissues, as well as the association of elevated YAP expression with clinicopathological features of GC. Methods: PubMed, Embase, Web of Science databases and the Chinese National Knowledge Infrastructure (CNKI) were searched from inception up to December 2018. The pooled ORs and corresponding 95% CIs were used to assess the strength of association. The heterogeneity among eligible studies was evaluated by the Q-test and I2 values. The sensitivity analysis was performed by sequential omission of individual studies. Moreover, Begg’s test and Egger’s test were used to evaluate publication bias. Results: A total of 2229 patients from 16 studies were included in this meta-analysis. The results showed that positive YAP expression was closely correlated with GC but not adjacent non-tumor tissue (OR = 8.08, 95% CI = 4.41 - 14.80). Additionally, YAP overexpression was found to be associated with more advanced TNM stage (OR = 2.68, 95% CI = 1.61 - 4.48), deeper invasion depth (OR = 2.05, 95% CI = 1.32 - 3.19), and lymph node metastasis (OR = 1.95, 95% CI = 1.29 - 2.96). No significant correlation was observed between YAP overexpression and degree of differentiation (OR = 1.17, 95% CI = 0.63 - 2.16), as well as gender of patients (OR = 1.12, 95% CI = 0.91 - 1.37) or tumor size (OR = 1.11, 95% CI = 0.82 - 1.49) of gastric cancer. Conclusions: This meta-analysis demonstrated that YAP might be a promising diagnostic marker and even a therapeutic target for gastric cancer.
基金supported by the Natural Science Foundation of China (Grant numbers:82025034 and 81973392)the National Key Research and Development Program (Grant number:2017YFE0109900, China)+5 种基金the Shenzhen Science and Technology Program (Grant number:KQTD20190929174023858, China)the Natural Science Foundation of Guangdong (Grant number:2017A030311018, China)the 111 project (Grant number:B16047, China)the Key Laboratory Foundation of Guangdong Province (Grant number:2017B030314030, China)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (Grant number:2017BT01Y093, China)the National Engineering and Technology Research Center for New drug Druggability Evaluation (Seed Program of Guangdong Province, Grant number:2017B090903004, China)。
文摘The constitutive androstane receptor(CAR, NR3 I1) belongs to nuclear receptor superfamily.It was reported that CAR agonist TCPOBOP induces hepatomegaly but the underlying mechanism remains largely unknown. Yes-associated protein(YAP) is a potent regulator of organ size. The aim of this study is to explore the role of YAP in CAR activation-induced hepatomegaly and liver regeneration.TCPOBOP-induced CAR activation on hepatomegaly and liver regeneration was evaluated in wildtype(WT) mice, liver-specific YAP-deficient mice, and partial hepatectomy(PHx) mice. The results demonstrate that TCPOBOP can increase the liver-to-body weight ratio in wild-type mice and PHx mice.Hepatocytes enlargement around central vein(CV) area was observed, meanwhile hepatocytesproliferation was promoted as evidenced by the increased number of KI67+cells around portal vein(PV)area. The protein levels of YAP and its downstream targets were upregulated in TCPOBOP-treated mice and YAP translocation can be induced by CAR activation. Co-immunoprecipitation results suggested a potential proteineprotein interaction of CAR and YAP. However, CAR activation-induced hepatomegaly can still be observed in liver-specific YAP-deficient(Yape/e) mice. In summary, CAR activation promotes hepatomegaly and liver regeneration partially by inducing YAP translocation and interaction with YAP signaling pathway, which provides new insights to further understand the physiological functions of CAR.
基金This study was supported by the grams from the Educational Bureau of Zhejiang Province (No. Y201122729), the National Natural Science Foundation of China (No. 81172560) and the Chinese Traditional Medicine Bureau of Zhejiang Province (No. 2012ZA004).
文摘Background Oral squamous cell carcinoma (OSCC) is one of the most common malignancies in the oral and maxillofacial region. Yes-associated protein 1 (YAP1) has been implicated as a bona fide oncogene in solid tumors. We seek to elucidate the role of YAP1 in OSCC tissue. Methods We identified YAP1 gene and protein overexpression in 30 OSCC patients and 10 normal oral mucosa tissues by immunohistochemistry, Western blotting and reverse transcription polymerase chain reaction (RT-PCR). Results In the normal oral mucosa by immunohistochemical staining, YAP1 mainly located in both the cytoplasm and nucleus mainly the nuclei of the basal cells. In OSCC, the expression of YAP1 translocated from the nucleus to cytoplasm YAP1 being mainly located in both the cytoplasm and nucleus of the adjacent mucosa. The expression of YAP1 gradual increased in normal oral mucosa, tumor adjacent mucosa and low grade, middle grade, high grade OSCC tissue by Western blotting. Significant difference was found between the expressions of the normal oral mucosa and OSCC tissue (P 〈0.05). The coincidence was detected between the normal oral mucosa and OSCC tissue by RT-PCR (P 〈0.05). Conclusions YAP1 is involved in the carcinogenesis and development of OSCC. There is a transformation between nucleus and cytoplasm.
基金supported by the National Natural Science Foundation of China(11802190)National Key Research and Development Program(2016YFC1102200)the 111 Project The Program of Introducing Talents of Discipline to Universities(B16033).
文摘Magnesium alloy(Mg alloy)has attracted massive attention in the potential applications of cardiovascular stents because of its good biocompatibility and degradability.However,whether and how the Mg alloy induces inflammation in endothelial cells remains unclear.In the present work,we investigated the activation of Yes-associated protein(YAP)upon Mg alloy stimuli and unveiled the transcriptional function in Mg alloy-induced inflammation.Quantitative RT–PCR,western blotting and immunofluorescence staining showed that Mg alloy inhibited the Hippo pathway to facilitate nuclear shuttling and activation of YAP in human coronary artery endothelial cells(HCAECs).Chromatin immunoprecipitation followed sequencing was carried out to explore the transcriptional function of YAP in Mg alloy-derived inflammation.This led to the observation that nuclear YAP further bonded to the promoter region of inflammation transcription factors and co-transcription factors.This binding event activated their transcription and modified mRNA methylation of inflammation-related genes through regulating the expression of N6-methyladenosine modulators(METTL3,METTL14,FTO and WTAP).This then promoted inflammation-related gene expression and aggravated inflammation in HCAECs.In YAP deficiency cells,Mg alloy-induced inflammation was reduced.Collectively,our data suggest that YAP contributes to the Mg alloy-derived inflammation in HCAECs and may provide a potential therapeutic target that alleviates inflammation after Mg alloy stent implantation.
基金This study was supported by a grant from the Capital Clinical Characteristic Application Research Project initiated by Beijing Science and Technology Commission(No.B70489-01).
文摘Background:The Nuclear Dbf2-related(NDR1)kinase is a member of the NDR/LATS family,which was a supplementary of Hippo pathway.However,whether NDR1 could inhibit glioblastoma(GBM)growth by phosphorylating Yes-associated protein(YAP)remains unknown.Meanwhile,the role of NDR1 in GBM was not clear.This study aimed to investigate the role of NDR1-YAP pathway in GBM.Methods:Bioinformation analysis and immunohistochemistry(IHC)were performed to identify the expression of NDR1 in GBM.The effect of NDR1 on cell proliferation and cell cycle was analyzed utilizing CCK-8,clone formation,immunofluorescence and flow cytometry,respectively.In addition,the xenograft tumor model was established as well.Protein interaction was examined by Coimmunoprecipitation and immunofluorescence to observe co-localization.Results:Bioinformation analysis and IHC of our patients’tumor tissues showed that expression of NDR1 in tumor tissue was relatively lower than that in normal tissues and was positively related to a lower survival rate.NDR1 could markedly reduce the proliferation and colony formation of U87 and U251.Furthermore,the results of flow cytometry showed that NDR1 led to cell cycle arrest at the G1 phase.Tumor growth was also inhibited in xenograft nude mouse models in NDR1-overexpression group.Western blotting and immunofluorescence showed that NDR1 could integrate with and phosphorylate YAP at S127 site.Meanwhile,NDR1 could mediate apoptosis process.Conclusion:In summary,our findings point out that NDR1 functions as a tumor suppressor in GBM.NDR1 is identified as a novel regulator of YAP,which gives us an in-depth comprehension of the Hippo signaling pathway.
基金This study was supported by the USA National Institutes of Health grant R01 CA187027(to N.Kang).
文摘Background and aim:The transcriptional co-activator Yes-associated protein-1(YAP1)has been impli-cated as an oncogene and is overexpressed in different kinds of human cancers,especially hepatocellular carcinoma(HCC).However,the role of YAP1 has not been reported in residual/recurrent HCC after transarterial chemoembolization(TACE).Our aim is to determine whether YAP1 is overexpressed in the residual/recurrent HCC after TACE.Methods:A total of 105 tumor tissues from 71 patients including 30 cases of primary HCC without prior treatment,35 cases of residual/recurrent HCC post TACE,and 6 cases of hepatoblastoma were included in the immunohistochemical study.YAP1 immunoreactivity was blindly scored as 0,1+,2+or 3+in density and percentages of positive cells.Results:About 33.3%(10/30)of primary HCC without prior treatment showed 2+of YAP1 immunore-activity.While 82.8%(29/35)of residual/recurrent HCCs after TACE treatment displayed 2-3+of YAP1 immunoreactivity,which was significantly higher compared to primary HCC without prior treatment(P=0.0002).YAP1 immunoreactivity was moderately to strongly positive(2-3+)in 100%of the hep-atoblastoma,particularly in the embryonal components(3+in 100%cases).Conclusions:YAP1 is significantly upregulated in the residual/recurrent HCCs post TACE treatment,suggesting that YAP1 may serve as a sensitive diagnostic marker and a treatment target for residual/recurrent HCC post TACE.
文摘BACKGROUND Glucocorticoid modulatory element-binding protein 1(GMEB1),which has been identified as a transcription factor,is a protein widely expressed in various tissues.Reportedly,the dysregulation of GMEB1 is linked to the genesis and development of multiple cancers.AIM To explore GMEB1’s biological functions in hepatocellular carcinoma(HCC)and figuring out the molecular mechanism.METHODS GMEB1 expression in HCC tissues was analyzed employing the StarBase database.Immunohistochemical staining,Western blotting and quantitative realtime PCR were conducted to examine GMEB1 and Yes-associate protein 1(YAP1)expression in HCC cells and tissues.Cell counting kit-8 assay,Transwell assay and flow cytometry were utilized to examine HCC cell proliferation,migration,invasion and apoptosis,respectively.The JASPAR database was employed for predicting the binding site of GMEB1 with YAP1 promoter.Dual-luciferase reporter gene assay and chromatin immunoprecipitation-qPCR were conducted to verify the binding relationship of GMEB1 with YAP1 promoter region.RESULTS GMEB1 was up-regulated in HCC cells and tissues,and GMEB1 expression was correlated to the tumor size and TNM stage of HCC patients.GMEB1 overexpression facilitated HCC cell multiplication,migration,and invasion,and suppressed the apoptosis,whereas GMEB1 knockdown had the opposite effects.GMEB1 bound to YAP1 promoter region and positively regulated YAP1 expression in HCC cells.CONCLUSION GMEB1 facilitates HCC malignant proliferation and metastasis by promoting the transcription of the YAP1 promoter region.
基金supported by the National Natural Science Foundation of China (31901462 and 31671613).
文摘Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.
基金financially supported by the National Natural Science Foundation of China(U2004104)the Natural Science Foundation of Henan Province(202300410080)+2 种基金the Key Project of Henan Education Committee(21A310005)the Internal Fund of Hebei University of Economics and Business(2020ZD10)the Postgraduate“Talent Program”of Henan University(SYL20060187 and SYL20060189)。
文摘In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the proliferation of splenocytes in response to mitogens.The splenocytes and mesenteric lymphocytes activated by T-cell mitogens(Con A and anti-CD3/CD28 antibodies)released high levels of IL-2 but low levels of IFN-γand IL-17A.The release of IL-4 was unaffected by MRJPs.Additionally,splenocytes and mesenteric lymphocytes activated by LPS were prevented by MRJPs at the same dose as that required for producing IL-1βand IL-6,two pro-inflammatory cytokines.The production of IL-1β,IL-6,and IFN-γwas negatively associated with estrogen levels,which were higher in the MRJP-treated animals than in the control group.Analysis of the gut microbiota revealed that feeding mice 250 mg/kg of MRJPs maintained the stability of the natural intestinal microflora of mice.Additionally,the LEf Se analysis identified biomarkers in the MRJP-treated mice,including Prevotella,Bacillales,Enterobacteriales,Gammaproteobacteria,Candidatus_Arthromitus,and Shigella.Our results showed that MRJPs are important components of royal jelly that modulate host immunity and hormone levels and help maintain gut microbiota stability.
基金supported by the Sci-Tech Innovation 2030(2022ZD0400701-2)Agricultural Science and Technology Innovation Program of CAAS+1 种基金the National Natural Science Foundation of China(31871705)the Central Public-Interest Scientific Institution Basal Research Fund。
文摘Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.
文摘The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully understood.ApoE exists as three common isoforms(ApoE2,ApoE3,and ApoE4),which differ in two amino acid residues.Traditionally,ApoE binds cholesterol and phospholipids and ApoE isoforms display diffe rent affinities for their receptors,lipids transport and distribution in the brain and periphery.The role of ApoE in the human depends on ApoE isoforms,brain regions,aging,and neural injury.APOE E4 is the strongest genetic risk factor for sporadic Alzheimer's disease,considering its role in influencing amyloid-beta metabolism.The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood,but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration,lipids metabolism,neurovascular unit,and microglial function.Consistent with the biological function of ApoE,ApoE4 isoform significantly alte red signaling pathways associated with cholesterol homeostasis,transport,and myelination.Also,the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis.The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE,brain function,and memory,from a molecular to a clinical level.APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes.Not only in learning and memory but also in neuro psychiatric symptoms that occur in a premorbid condition.Cla rifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms,particularly suicidal ideation in Alzheimer's disease patients,may be useful for elucidating also the underlying pathophysiological process and its prognosis.Also,the effects of anti-amyloid-beta drugs,recently approved for the treatment of Alzheimer's disease,could be influenced by the APOE genotype.
基金in part supported by the National Natural Science Foundation of China,Nos.30560042,81160161,81360198,and 82160255Education Department of Jiangxi Province,Nos.GJJ13198 and GJJ170021+1 种基金Jiangxi Provincial Department of Science and Technology,No.20192BAB205043Health and Family Planning Commission of Jiangxi Province,Nos.20181019 and 202210002(all to RX)。
文摘The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).
基金supported by the National Natural Science Foundation of China(31501977)the Sichuan Provincial Key R&D Project China(22ZDYF0194)the Double World-Class Project of Southwest Minzu University China(XM2023010)。
文摘This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.A total of 7201-d-old yellow-feathered maleb roilers were allocated to 9 treatments with 8 replicate cages of 10 birds per cage.The dietary treatments were consisted of a basal diet(contained 79.6 mg Fe kg^(-1))supplemented with 0,20,40,60,80,160,320,640,and 1,280 mg Fe kg^(-1)in the form of FeSO_(4)·7H_(2)O.Compared with the birds in the control group,birds supplemented with 20mg Fe kg^(-1)had higher average daily gain(ADG)(P<0.0001).Adding 640 and 1,280 mg Fe kg^(-1)significantly decreased ADG(P<0.0001)and average daily feed intake(ADFI)(P<0.0001)compared with supplementation of 20mg Fe kg^(-1).Malondialdehyde(MDA)concentration in plasma and duodenum increased linearly(P<0.0001),but MDA concentration in liver and jejunum increased linearly(P<0.05)or quadratically(P<0.05)with increased dietary Fe concentration.The villus height(VH)in duodenum and jejunum,and the ratio of villus height to crypt depth(V/C)in duodenum decreased linearly(P?0.05)as dietary Feincreased.As dietary Fe increased,the jejunal relative mRNA abundance of claudin-1 decreased linearly(P=0.001),but the jejunal relative mRNA abundance of zona occludens-1(ZO-1)and occludin decreased linearly(P?0.05)or quadratically(P?0.05).Compared with the supplementation of 20 mg Fe kg^(-1),the supplementation of640 mg Fe kg^(-1)or higher increased(P?0.05)MDA concentrations in plasma,duodenum,and jejunum,decreased VH in the duodenum and jejunum,and the addition of 1,280 mg Fe kg^(-1)reduced(P?0.05)the jejunal tight junction protein(claudin-1,ZO-1,occludin)mRNA abundance.In summary,640 mg of supplemental Fe kg^(-1)or greater was associated with decreased growth performance,increased oxidative stress,disrupted intestinal morphology,and reduced mRNA expression of jejunal tight junction protein.