[Objectives]This study was conducted to investigate the effects of magnesium on the yield of Blumea balsamifera(L.)DC.and the accumulation of primary metabolites that affect yield of the medicinal material.[Methods]Th...[Objectives]This study was conducted to investigate the effects of magnesium on the yield of Blumea balsamifera(L.)DC.and the accumulation of primary metabolites that affect yield of the medicinal material.[Methods]The annual seedlings of B.balsamifera were selected as experimental materials.The treatment concentrations of magnesium(Mg)were set as 0,1.5,15 and 150 mg/ml supplied by MgSO4·7H2O.The yield of the medicinal material was measured dynamically.And the content of total sugar was determined by 3,5-dinitrosalicylic acid colorimetry;the content of crude protein was determined by the Kjeldahl method;the ash content was determined by the high-temperature burning method;the crude fat content was determined with a crude fat instrument;and the crude fiber content was determined by the acid-base washing and weighing method.[Results]Mg significantly increased the yield of B.balsamifera medicinal material,especially 15 mg/ml Mg.It was found that in September,October and November,1.5 mg/ml and 15 mg/ml Mg significantly increased the contents of primary metabolites including total sugar,ash,crude protein,crude fat and crude fiber,and 150 mg/ml of Mg increased the accumulation of total sugar,ash,crude protein and crude fiber to different degrees,but had certain inhibitory effect on the accumulation of crude fat.In December,the application of Mg inhibited the accumulation of total sugar,ash and crude protein to different degrees,but significantly promoted the accumulation of crude fat and fiber.[Conclusions]This study provides a theoretical basis for clarifying the effects of different concentrations of magnesium on plant growth.展开更多
Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,i...Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.展开更多
Dependence of yields of OH (hydroxyl) radicals on the mass and specific energy of heavy ions and elapsed time after irradiation was investigated,to understand chemical reactions of aqueous solutions.The yields of irra...Dependence of yields of OH (hydroxyl) radicals on the mass and specific energy of heavy ions and elapsed time after irradiation was investigated,to understand chemical reactions of aqueous solutions.The yields of irradiation products of phenol,super-linearly increased with the incident energy of He,C,and Ne ions ranging from 2 to 18 MeV/u.The yields of the OH radicals were estimated by analyzing the yields of the irradiation products of phenol. The yields of the OH radicals increased with the specific energy for each ion,but decreased both with the mass of each ion at the same specific energy and elapsed time after irradiation.展开更多
The novel salt-tolerant cereal, primary Tritipyrnm, is the third artificially synthesized crop plant. The agronomic traits and grain yields of 13 primary 6x Tritipyrum lines were evaluated and compared with five moder...The novel salt-tolerant cereal, primary Tritipyrnm, is the third artificially synthesized crop plant. The agronomic traits and grain yields of 13 primary 6x Tritipyrum lines were evaluated and compared with five modern 6x triticale lines and nine bread wheat cultivars at Bahonar University, Kerman, Iran in a completely randomized block design with three replications. The primary Tritipyrum lines increased the grain yield per plant by 2.8% and 14.1% compared to triticale promising lines and Iranian bread wheat cultivars, respectively. Although the primary Tritipyrum lines were late maturing, they were shorter than the triticale lines and wheat cultivars and superior in many characters such as penultimate leaf area, flag leaf length, penultimate leaf length and time to milky ripeness. Genotypes were divided into four groups for agronomic and morphological traits and four groups for grain yield by cluster analyses. All clusters showed significant differences (a = 5%) for all traits and the first cluster, which comprised primary Tritipyrum lines, had a higher mean grain yield than the other clusters. The results of this first large-scale trial indicated the high adaptation of primary Tritipyrum lines to conditions in Kerman province in South-east of Iran.展开更多
Land use/land cover(LULC)change and climate change are two major factors affecting the provision of ecosystem services which are closely related to human well-being.However,a clear understanding of the relationships b...Land use/land cover(LULC)change and climate change are two major factors affecting the provision of ecosystem services which are closely related to human well-being.However,a clear understanding of the relationships between these two factors and ecosystem services in Central Asia is still lacking.This study aimed to comprehensively assess ecosystem services in Central Asia and analyze how they are impacted by changes in LULC and climate.The spatiotemporal patterns of three ecosystem services during the period of 2000-2015,namely the net primary productivity(NPP),water yield,and soil retention,were quantified and mapped by the Carnegie-Ames-Stanford Approach(CASA)model,Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model,and Revised Universal Soil Loss Equation(RUSLE).Scenarios were used to determine the relative importance and combined effect of LULC change and climate change on ecosystem services.Then,the relationships between climate factors(precipitation and temperature)and ecosystem services,as well as between LULC change and ecosystem services,were further discussed.The results showed that the high values of ecosystem services appeared in the southeast of Central Asia.Among the six biomes(alpine forest region(AFR),alpine meadow region(AMR),typical steppe region(TSR),desert steppe region(DSR),desert region(DR),and lake region(LR)),the values of ecosystem services followed the order of AFR>AMR>TSR>DSR>DR>LR.In addition,the values of ecosystem services fluctuated during the period of 2000-2015,with the most significant decreases observed in the southeast mountainous area and northwest of Central Asia.LULC change had a greater impact on the NPP,while climate change had a stronger influence on the water yield and soil retention.The combined LULC change and climate change exhibited a significant synergistic effect on ecosystem services in most of Central Asia.Moreover,ecosystem services were more strongly and positively correlated with precipitation than with temperature.The greening of desert areas and forest land expansion could improve ecosystem services,but unreasonable development of cropland and urbanization have had an adverse impact on ecosystem services.According to the results,ecological stability in Central Asia can be achieved through the natural vegetation protection,reasonable urbanization,and ecological agriculture development.展开更多
Building a more resilient response system to climate change for sustainable development and reducing uncertainty in China’s food markets,requires access to historical research gaps and mapping future research progres...Building a more resilient response system to climate change for sustainable development and reducing uncertainty in China’s food markets,requires access to historical research gaps and mapping future research progress for decision making.However,the lack of quantitative and objective analyses to ensure the stability and development of agroecosystems increases the complexity of agro-climatic mechanisms,which leads to uncertainty and undesirable consequences.In this paper,we review the characteristics of climate change in China(1951–2020),reveal the mechanisms of agroecosystem structure in response to climate,and identify challenges and opportunities for future efforts in the context of research progress.The aim is to improve the scientific validity and relevance of future research by clarifying agro-climatic response mechanisms.The results show that surface temperature,precipitation,and frequency of extreme weather events have increased to varying degrees in major agricultural regions of China in 1951–2020.And they have strong geographic variation,which has resulted in droughts in the north and floods in the south.Moreover,climate change has complicated the mechanisms of soil moisture,Net Primary Productivity(NPP),soil carbon pool,and crop pest structure in agroecosystems.This lends to a reduction in soil water holding capacity,NPP,soil carbon content,and the number of natural enemies of diseases and insects,which in turn affects crop yields.However,human interventions can mitigate the deterioration of these factors.We have also realized that the methodology and theory of historical research poses a great challenge to future agroecosystem.Historical and projected climate trends identified current gaps in interdisciplinary integration and multidisciplinary research required to manage diverse spatio-temporal climate change impacts on agroecosystems.Future efforts should highlight integrated management and decision making,multidisciplinary big data coupling,and numerical simulations to ensure sustainable agricultural development,ecological security,and food security in China.展开更多
The response of grain yield, biomass yield and harvest index of maize to the application of commercial organic ameliorants was inconsistent and poor. Hence it was hypothesized that the supply of N and P to maize plant...The response of grain yield, biomass yield and harvest index of maize to the application of commercial organic ameliorants was inconsistent and poor. Hence it was hypothesized that the supply of N and P to maize plants was inadequate during vegetative growth, resulting in low concentrations of the two nutrients in maize biomass. The effects of nine ameliorants on the N and P concentrations of maize plants at ninth leaf (V9) and silking (R1) stages of maize were studied over three years at Bothaville (8% clay), Ottosdal (12% clay) and Potchefstroom (34% clay). All ameliorants were applied as prescribed by manufacturers. The N and P concentrations in maize biomass of the ameliorants at V9 and R1 were lower, comparable or higher, showing that the inconsistent and poor response of yield parameters can not be ascribed to inadequate uptake of N and P. A matter of concern that justifies thorough investigation, is the prescribed use of Crop care and Growmor with partial and of Montys and Promis with no NPK fertilization, an unsustainable practice over the long term. Characterization of the active ingredient(s) of the ameliorants is deemed also of importance for better insight.展开更多
基金Supported by National Natural Science Foundation of China(81403035)Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences(1630032019004)Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences(1630032020002).
文摘[Objectives]This study was conducted to investigate the effects of magnesium on the yield of Blumea balsamifera(L.)DC.and the accumulation of primary metabolites that affect yield of the medicinal material.[Methods]The annual seedlings of B.balsamifera were selected as experimental materials.The treatment concentrations of magnesium(Mg)were set as 0,1.5,15 and 150 mg/ml supplied by MgSO4·7H2O.The yield of the medicinal material was measured dynamically.And the content of total sugar was determined by 3,5-dinitrosalicylic acid colorimetry;the content of crude protein was determined by the Kjeldahl method;the ash content was determined by the high-temperature burning method;the crude fat content was determined with a crude fat instrument;and the crude fiber content was determined by the acid-base washing and weighing method.[Results]Mg significantly increased the yield of B.balsamifera medicinal material,especially 15 mg/ml Mg.It was found that in September,October and November,1.5 mg/ml and 15 mg/ml Mg significantly increased the contents of primary metabolites including total sugar,ash,crude protein,crude fat and crude fiber,and 150 mg/ml of Mg increased the accumulation of total sugar,ash,crude protein and crude fiber to different degrees,but had certain inhibitory effect on the accumulation of crude fat.In December,the application of Mg inhibited the accumulation of total sugar,ash and crude protein to different degrees,but significantly promoted the accumulation of crude fat and fiber.[Conclusions]This study provides a theoretical basis for clarifying the effects of different concentrations of magnesium on plant growth.
基金This research was funded by the Key Laboratory for Sustainable Development of Xinjiang's Historical and Cultural Tourism,Xinjiang University,China(LY2022-06)the Tianchi Talent Project.
文摘Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.
文摘Dependence of yields of OH (hydroxyl) radicals on the mass and specific energy of heavy ions and elapsed time after irradiation was investigated,to understand chemical reactions of aqueous solutions.The yields of irradiation products of phenol,super-linearly increased with the incident energy of He,C,and Ne ions ranging from 2 to 18 MeV/u.The yields of the OH radicals were estimated by analyzing the yields of the irradiation products of phenol. The yields of the OH radicals increased with the specific energy for each ion,but decreased both with the mass of each ion at the same specific energy and elapsed time after irradiation.
文摘The novel salt-tolerant cereal, primary Tritipyrnm, is the third artificially synthesized crop plant. The agronomic traits and grain yields of 13 primary 6x Tritipyrum lines were evaluated and compared with five modern 6x triticale lines and nine bread wheat cultivars at Bahonar University, Kerman, Iran in a completely randomized block design with three replications. The primary Tritipyrum lines increased the grain yield per plant by 2.8% and 14.1% compared to triticale promising lines and Iranian bread wheat cultivars, respectively. Although the primary Tritipyrum lines were late maturing, they were shorter than the triticale lines and wheat cultivars and superior in many characters such as penultimate leaf area, flag leaf length, penultimate leaf length and time to milky ripeness. Genotypes were divided into four groups for agronomic and morphological traits and four groups for grain yield by cluster analyses. All clusters showed significant differences (a = 5%) for all traits and the first cluster, which comprised primary Tritipyrum lines, had a higher mean grain yield than the other clusters. The results of this first large-scale trial indicated the high adaptation of primary Tritipyrum lines to conditions in Kerman province in South-east of Iran.
基金This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences,the Pan-Third Pole Environment Study for a Green Silk Road(Pan-TPE)(XDA2004030202).
文摘Land use/land cover(LULC)change and climate change are two major factors affecting the provision of ecosystem services which are closely related to human well-being.However,a clear understanding of the relationships between these two factors and ecosystem services in Central Asia is still lacking.This study aimed to comprehensively assess ecosystem services in Central Asia and analyze how they are impacted by changes in LULC and climate.The spatiotemporal patterns of three ecosystem services during the period of 2000-2015,namely the net primary productivity(NPP),water yield,and soil retention,were quantified and mapped by the Carnegie-Ames-Stanford Approach(CASA)model,Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model,and Revised Universal Soil Loss Equation(RUSLE).Scenarios were used to determine the relative importance and combined effect of LULC change and climate change on ecosystem services.Then,the relationships between climate factors(precipitation and temperature)and ecosystem services,as well as between LULC change and ecosystem services,were further discussed.The results showed that the high values of ecosystem services appeared in the southeast of Central Asia.Among the six biomes(alpine forest region(AFR),alpine meadow region(AMR),typical steppe region(TSR),desert steppe region(DSR),desert region(DR),and lake region(LR)),the values of ecosystem services followed the order of AFR>AMR>TSR>DSR>DR>LR.In addition,the values of ecosystem services fluctuated during the period of 2000-2015,with the most significant decreases observed in the southeast mountainous area and northwest of Central Asia.LULC change had a greater impact on the NPP,while climate change had a stronger influence on the water yield and soil retention.The combined LULC change and climate change exhibited a significant synergistic effect on ecosystem services in most of Central Asia.Moreover,ecosystem services were more strongly and positively correlated with precipitation than with temperature.The greening of desert areas and forest land expansion could improve ecosystem services,but unreasonable development of cropland and urbanization have had an adverse impact on ecosystem services.According to the results,ecological stability in Central Asia can be achieved through the natural vegetation protection,reasonable urbanization,and ecological agriculture development.
基金Under the auspices of Scientific and Technological Development Program of Jilin Province(No.20220101154JC)Strategic Pioneering Science and Technology Special Project of Chinese Academy of Sciences(No.XDA28080503)+1 种基金National Natural Science Foundation of China(No.42071025)Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2023240)。
文摘Building a more resilient response system to climate change for sustainable development and reducing uncertainty in China’s food markets,requires access to historical research gaps and mapping future research progress for decision making.However,the lack of quantitative and objective analyses to ensure the stability and development of agroecosystems increases the complexity of agro-climatic mechanisms,which leads to uncertainty and undesirable consequences.In this paper,we review the characteristics of climate change in China(1951–2020),reveal the mechanisms of agroecosystem structure in response to climate,and identify challenges and opportunities for future efforts in the context of research progress.The aim is to improve the scientific validity and relevance of future research by clarifying agro-climatic response mechanisms.The results show that surface temperature,precipitation,and frequency of extreme weather events have increased to varying degrees in major agricultural regions of China in 1951–2020.And they have strong geographic variation,which has resulted in droughts in the north and floods in the south.Moreover,climate change has complicated the mechanisms of soil moisture,Net Primary Productivity(NPP),soil carbon pool,and crop pest structure in agroecosystems.This lends to a reduction in soil water holding capacity,NPP,soil carbon content,and the number of natural enemies of diseases and insects,which in turn affects crop yields.However,human interventions can mitigate the deterioration of these factors.We have also realized that the methodology and theory of historical research poses a great challenge to future agroecosystem.Historical and projected climate trends identified current gaps in interdisciplinary integration and multidisciplinary research required to manage diverse spatio-temporal climate change impacts on agroecosystems.Future efforts should highlight integrated management and decision making,multidisciplinary big data coupling,and numerical simulations to ensure sustainable agricultural development,ecological security,and food security in China.
文摘The response of grain yield, biomass yield and harvest index of maize to the application of commercial organic ameliorants was inconsistent and poor. Hence it was hypothesized that the supply of N and P to maize plants was inadequate during vegetative growth, resulting in low concentrations of the two nutrients in maize biomass. The effects of nine ameliorants on the N and P concentrations of maize plants at ninth leaf (V9) and silking (R1) stages of maize were studied over three years at Bothaville (8% clay), Ottosdal (12% clay) and Potchefstroom (34% clay). All ameliorants were applied as prescribed by manufacturers. The N and P concentrations in maize biomass of the ameliorants at V9 and R1 were lower, comparable or higher, showing that the inconsistent and poor response of yield parameters can not be ascribed to inadequate uptake of N and P. A matter of concern that justifies thorough investigation, is the prescribed use of Crop care and Growmor with partial and of Montys and Promis with no NPK fertilization, an unsustainable practice over the long term. Characterization of the active ingredient(s) of the ameliorants is deemed also of importance for better insight.