期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Yield performance and optimal nitrogen and phosphorus application rates in wheat and faba bean intercropping 被引量:2
1
作者 XIAO Jing-xiu ZHU Ying-an +3 位作者 BAI Wen-lian LIU Zhen-yang TANG Li ZHENG Yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第11期3012-3025,共14页
Yield performance in cereal and legume intercropping is related to nutrient management,however,the yield response of companion crops to nitrogen(N)input is inconclusive and only limited efforts have focused on ratione... Yield performance in cereal and legume intercropping is related to nutrient management,however,the yield response of companion crops to nitrogen(N)input is inconclusive and only limited efforts have focused on rationed phosphorous(P)fertilization.In this study,two multi-year field experiments were implemented from 2014-2019 under identical conditions.Two factors in a randomized complete block design were adopted in both experiments.In field experiment 1,the two factors included three planting patterns(mono-cropped wheat(MW),mono-cropped faba bean(MF),and wheat and faba bean intercropping(W//F))and four N application rates(N0,0 kg N ha^(-1);N1,90 and 45 kg N ha^(-1) for wheat and faba beans,respectively;N2,180 and 90 kg N ha^(-1) for wheat and faba beans,respectively;and N3,270 and 135 kg N ha^(-1) for wheat and faba beans,respectively).In field experiment 2,the two factors included three P application rates(P0,0 kg P_(2)O_(5) ha^(-1);P1,45 kg P_(2)O_(5) ha^(-1);and P2,90 kg P_(2)O_(5) ha^(-1))and the same three planting patterns(MW,MF,and W//F).The yield performances of inter-and mono-cropped wheat and faba beans under different N and P application rates were analyzed and the optimal N and P rates for intercropped wheat(IW)and MW were estimated.The results revealed that intercropping favored wheat yield and was adverse to faba bean yield.Wheat yield increased by 18-26%,but faba bean yield decreased by 5-21% in W//F compared to MW and MF,respectively.The stimulated IW yield drove the yield advantage in W//F with an average land equivalent ratio(LER)of 1.12.N and P fertilization benefited IW yield,but reduced intercropped faba bean(IF)yield.Nevertheless,the partial LER of wheat(pLER_(wheat))decreased with increasing N application rates,and the partial LER of faba bean(pLER_(faba bean))decreased with increasing P application rates.Thus,LER decreased as N input increased and tended to decline as P rates increased.IW maintained a similar yield as MW,even under reduced 40-50% N fertilizer and 30-40% P fertilizer conditions.The estimated optimum N application rates for IW and MW were 150 and 168 kg ha^(-1),respectively,and 63 and 62 kg ha^(-1) for P_(2)O_(5),respectively.In conclusion,W//F exhibited yield advantages due to stimulated IW yield,but the intercropping yield benefit decreased as N and P inputs increased.Thus,it was concluded that modulated N and P rates could maximize the economic and ecological functions of intercropping.Based on the results,rates of 150 kg N ha^(-1) and 60 kg P_(2)O_(5) ha^(-1) are recommended for IW production in southwestern China and places with similar conditions. 展开更多
关键词 land equivalent ratio nitrogen and phosphorus optimal application rate wheat and faba bean intercropping yield performance
下载PDF
Performance in Grain Yield and Physiological Traits of Rice in the Yangtze River Basin of China During the Last 60 yr 被引量:20
2
作者 ZHANG Hao CHEN Ting-ting +3 位作者 LIU Li-jun WANG Zhi-qin YANG Jian-chang ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第1期57-66,共10页
Knowledge on the performance in grain yield and physiological traits is essential to understand the main yield-limiting factor and make strategies for breeding and crop management in rice (Oryza sativa L.). This stu... Knowledge on the performance in grain yield and physiological traits is essential to understand the main yield-limiting factor and make strategies for breeding and crop management in rice (Oryza sativa L.). This study investigated the changes in grain yield and associated physiological traits of rice in the Yangtze River Basin of China during the last 60 yr. Thirteen mid-season indica and 12 japonica rice cultivars that were popularly used were grown in the field in 2008 and 2009. The grain yield and yield components, biomass, leaf area, leaf photosynthesis, root oxidation activity, and harvest index were examined. The results showed that grain yield and grain yield per day have progressively increased during the years and such increases are mainly attributed to the expanded sink size as a result of more spikelets per panicle, especially for the case of super rice. Both biomass and harvest index were increased with the improvement of cultivars. Increase in biomass for modern rice cultivars was associated with an enhancement of leaf area and photosynthesis, root dry weight, and root oxidation activity, although the indica super rice cultivars showed a lower leaf photosynthetic rate and root oxidation activity than the semi-dwarf cultivars during the grain filling period. Both indica and japonica super rice cultivars exhibited a low percentage of filled grains, which may limit their great yield potential. All the data suggested that grain yield have been substantially improved during the 60 yr of rice breeding in the Yangtze River Basin. Expanded sink size, increased dry matter production and harvest index, and enhanced leaf area and photosynthesis, root dry weight, and root oxidation activity contribute to the improvement in grain yield. Increase in filling efficiency could realize the great yield potential in super rice. 展开更多
关键词 RICE yield performance grain filling physiological traits super rice
下载PDF
QTL editing confers opposing yield performance in different rice varieties 被引量:19
3
作者 Lan Shen Chun Wang +6 位作者 Yaping Fu Junjie Wang Qing Liu Xiaoming Zhang Changjie Yan Qian Qian Kejian Wang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第2期89-93,共5页
Grain yield is one of the most important and complex trait for genetic improvement in crops; it is known to be controlled by a number of genes known as quantitative trait loci(QTLs). In the past decade, many yield-c... Grain yield is one of the most important and complex trait for genetic improvement in crops; it is known to be controlled by a number of genes known as quantitative trait loci(QTLs). In the past decade, many yield-contributing QTLs have been identified in crops.However, it remains unclear whether those QTLs confer the same yield performance in different genetic backgrounds. Here, we performed CRISPR/Cas_9-mediated QTL editing in five widely-cultivated rice varieties and revealed that the same QTL can have diverse, even opposing, effects on grain yield in different genetic backgrounds. 展开更多
关键词 QTL editing confers opposing yield performance in different rice varieties Figure
原文传递
Effects of early energy and protein restriction on growth performance, clinical blood parameters, carcass yield, and tibia parameters of broilers
4
作者 YANG Hai-ming WANG Wei +5 位作者 WANG Zhi-yue YANG Zhi WAN Yan HOU Bang-hong HUANG Kai-hua LU Hao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第8期1825-1832,共8页
financially supported by the Science and Technology Develop Project of Northern Jiangsu, China (BN2015136);the Priority Academic Program Development of Jiangsu Higher Education Institution, China
关键词 dilution energy protein growth performance serum biochemical parameters carcass yield tibia parameters
下载PDF
Quantitative design of yield components to simulate yield formation for maize in China 被引量:3
5
作者 HOU Hai-peng MA Wei +4 位作者 Mehmood Ali NOOR TANG Li-yuan LI Cong-feng DING Zai-song ZHAO Ming 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第3期668-679,共12页
Maize(Zea mays L.) stands prominently as one of the major cereal crops in China as well as in the rest of the world.Therefore,predicting the growth and yield of maize for large areas through yield components under hig... Maize(Zea mays L.) stands prominently as one of the major cereal crops in China as well as in the rest of the world.Therefore,predicting the growth and yield of maize for large areas through yield components under high-yielding environments will help in understanding the process of yield formation and yield potential under different environmental conditions.This accurate early assessment of yield requires accuracy in the formation process of yield components as well.In order to formulate the quantitative design for high yields of maize in China,yield performance parameters of quantitative design for high grain yields were evaluated in this study,by utilizing the yield performance equation with normalization of planting density.Planting density was evaluated by parameters including the maximum leaf area index and the maximum leaf area per plant.Results showed that the variation of the maximum leaf area per plant with varying plant density conformed to the Reciprocal Model,which proved to have excellent prediction with root mean square error(RMSE) value of 5.95%.Yield model estimation depicted that the best optimal maximum leaf area per plant was 0.63 times the potential maximum leaf area per plant of hybrids.Yield performance parameters for different yield levels were quantitatively designed based on the yield performance equation.Through validation of the yield performance model by simulating high yields of spring maize in the Inner Mongolia Autonomous Region and Jilin Province,China,and summer maize in Shandong Province,the yield performance equation showed excellent prediction with the satisfactory mean RMSE value(7.72%) of all the parameters.The present study provides theoretical support for the formulation of quantitative design for sustainable high yield of maize in China,through consideration of planting density normalization in the yield prediction process,providing there is no water and nutrient limitation. 展开更多
关键词 MAIZE yield performance parameters high yield yield prediction process quantitative design
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部