The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law harde...The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law hardening curve.Two formulas to estimate the strain hardening exponent n for a special Y/T were obtained by least squared regression method and the influence of Y/T on n was analyzed.As an application of n-Y/T expression,the analytical solutions of burst pressure for X70 pipeline without and with corrosion defects were also obtained.The results indicate that the burst pressure of defect-free X70 pipe without corrosion defects is a function of the Y/T,pipe geometry t0/D0 and engineering tensile strength,and increases as Y/T or t0/D0 increases; whilst the burst pressure of corroded X70 pipe decreases with the increase of defect depths,d/t.Comparisons indicate that the present analytical solutions closely match available experimental and numerical data.展开更多
The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the...The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.展开更多
Background: Netball is a popular sport. Due to high impact and quick movement, there is an enormous load on the lower extremities which increases the risk for injury. Aim: The aim of this study was to investigate the ...Background: Netball is a popular sport. Due to high impact and quick movement, there is an enormous load on the lower extremities which increases the risk for injury. Aim: The aim of this study was to investigate the relationship between the quadricep and hamstring strength and the prevalence of lower extremity injuries in netball players. Setting: Twenty-five female netball players (age: 20.8 ± 1.4 years) voluntarily participated. Methods: The Cybex Isokinetic dynamometer was used to determine concentric knee torques. Quadriceps:hamstring strength ratio was determined. Occurrence of lower extremity injuries was documented bi-weekly. Results: Medium effect sizes were noted for flexion torque:work for the left leg and for the quadriceps:hamstring ratio (≥60%) for the right leg. All the other measured variables have a small effect size. 18.75% of lower extremity injuries and ConQ:ConH of Conclusion: Injuries to the ankle and knee are especially common among netball players. Hamstring and quadriceps muscle asymmetry (>10%) were found to be a potential indicator of lower extremity injury. Contribution: This study highlights awareness on lower extremity injuries and the strength ratio between the quadriceps and hamstrings. This can aid coaches and netball players to lower the risk for injuries and thus improve individual- and team performance.展开更多
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio...The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.展开更多
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results...This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.展开更多
To test the influence of binder strength, porous concretes with 4 binder strengths between 30.0-135.0 MPa and 5 void ratios between 15%-35% were tested. The results indicated that for the same aggregate, the rates of ...To test the influence of binder strength, porous concretes with 4 binder strengths between 30.0-135.0 MPa and 5 void ratios between 15%-35% were tested. The results indicated that for the same aggregate, the rates of strength reduction due to the increases in void ratio were the same for binders with different strengths. To study the influence of aggregate size, 3 single size aggregates with nominal sizes of 5.0, 13.0 and 20.0 mm (Nos. 7, 6 and 5 according to JIS A 5001) were used to make porous concrete. The strengths of porous concrete are found to be dependent on aggregate size. The rate of strength reduction of porous concrete with small aggregate size is found to be higher than that with larger aggregate size. At the same void ratio, the strength of porous concrete with large aggregate is larger than that with small aggregate. The general equations for porous concrete are related to compressive strength and void ratio for different binder strengths and aggregate sizes.展开更多
For sites susceptible to liquefaction induced lateral spreading during a probable earthquake, geotechnical engineers often need to know the undrained residual shear strength of the liquefied soil deposit to estimate l...For sites susceptible to liquefaction induced lateral spreading during a probable earthquake, geotechnical engineers often need to know the undrained residual shear strength of the liquefied soil deposit to estimate lateral spreading displacements, and the forces acting on the piles from the liquefied soils in order to perform post liquefaction stability analyses. The most commonly used methods to estimate the undrained residual shear strength (Su~) of liquefied sand deposits are based on the correlations determined from liquefaction induced flow failures with SPT and CPT data. In this study, 44 lateral spread case histories are analyzed and a new relationship based on only lateral spread case histories is recommended, which estimates the residual shear strength ratio of the liquefiable soil layer from normalized shear wave velocity. The new proposed method is also utilized to estimate the residual lateral displacement of an example bridge problem in an area susceptible to lateral spreading in order to provide insight into how the proposed relationship can be used in geotechnical engineering practice.展开更多
Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile streng...Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile strength(ITS)and California bearing ratio(CBR)and as well as the evaluation of shear strength parameters obtained from the triaxial test would be very effective at geotechnical construction sites.This research was aimed at investigating the influence of natural fibers as sustainable ones including basalt(BS)and bagasse(BG)as well as synthetic polyester(PET)fibers on the strength behavior of clayey soil.To this end,the effects of various fiber contents(0.5%,1%and 2%)and lengths(2.5 mm,5 mm and 7.5 mm)were experimentally evaluated.By conducting ITS and CBR tests,it was found that increasing fiber content and length had a significant influence on CBR and ITS values.Moreover,2%of 7.5 mm-long fibers led to the largest values of CBR and ITS.The CBR values of soil reinforced with PET,BS,and BG fibers were determined as 19.17%,15.43%and 13.16%,respectively.The ITS values of specimens reinforced with PET,BS,and BG fibers were reported as 48.57 kPa,60.7 kPa and 47.48 kPa,respectively.The results of the triaxial compression test revealed that with the addition of BS fibers,the internal friction angle increased by about 100%,and with the addition of PET fibers,the cohesion increased by about 70%.Moreover,scanning electron microscope(SEM)analysis was employed to confirm the findings.The relationship between CBR and ITS values,obtained via statistical analysis and used for the optimum design of road pavement layers,demonstrated that these parameters had high correlation coefficients.The outcomes of multiple linear regression and sensitivity analysis also confirmed that the fiber content had a greater effect on CBR and ITS values than fiber length.展开更多
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ...The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.展开更多
The variation regularity of coke strength was investigated in terms of the genetic factors and petrographic parameters of coal in collaboration with the technical properties of coal. A concept of inert holding ratio o...The variation regularity of coke strength was investigated in terms of the genetic factors and petrographic parameters of coal in collaboration with the technical properties of coal. A concept of inert holding ratio of coal was proposed. There is an optimal inert holding ratio for different ranks of coals for making coke with highest combined strength. The additive property of inert holding ratio under normal conditions was demonstrated with actual examples of coal blending.Thus it is possible to predict the combined strength of coke through reflectance, content of inert components and caking index diagram system.展开更多
The multipole mixing ratios have been calculated by a2-ratio method, from levels of 93Mo(p, nγ) reaction. The branching ratios of such γ-transitions are used to calculate the total gamma widths. Besides, the trans...The multipole mixing ratios have been calculated by a2-ratio method, from levels of 93Mo(p, nγ) reaction. The branching ratios of such γ-transitions are used to calculate the total gamma widths. Besides, the transition strengths and probabilities have been calculated for γ-transitions from excited states whose life times have been reported previously. The results are found to be in general in good agreement with the previous results populated from the previous work.展开更多
In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of thi...In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of this study is therefore to investigate if the concrete produced with rationalized mix ratio can be adopted as conventional mix ratio in terms of minimum required compression strength of concrete for buildings. Specifically this work compared the conventional mix ratio of 350 kg of cement: 400 liters of sand: 800 liters of gravel for a cubic meter and the rationalized batch of 350 kg of cement: 600 liters of sand: 600 liters of 5/15 gravel, 15/25 gravel and a combination of 5/15 + 15/25 gravel. Average compressive tests’results for both the conventional and the rationalized mix ratios were found to meet the minimum compressive strength of 65% at 7 days, 90% at 14 days and 99% at 28 days for gravel size combination 5/15 + 15/25. Single size gravel of 5/15 and 15/25 did not meet the minimum required compressive strength of 20 N/mm<sup>2</sup> for the rationalized mix ratio at 28 days curing based on the minimum compressive strength required, this study arrives at the conclusion that the equal volumes of sand and gravel mix ratio of 350 kg/m<sup>3</sup> of cement: 600 liters of sand: 600 liters of gravel mix ratio can be adopted as a conventional concrete mix ratio for gravel size 5/15 + 15/25.展开更多
Based on the high sulfur content in titanium gypsum,the concept of the calcium-silicon-sulfur(Ca/Si/S)ratio was proposed.The Ca/Si/S ratio of concrete was adjusted by changing the titanium gypsum,fly ash,and cement co...Based on the high sulfur content in titanium gypsum,the concept of the calcium-silicon-sulfur(Ca/Si/S)ratio was proposed.The Ca/Si/S ratio of concrete was adjusted by changing the titanium gypsum,fly ash,and cement con-tent.The effects of different Ca/Si/S ratios on the mechanical properties,hydration products,and concrete micro-structure were investigated by nuclear magnetic resonance,uniaxial compression,and scanning electron microscopy.The result shows:(1)The compressive strength of concrete mixed with titanium gypsum increases first and then decreases with the Ca/Si/S ratio decrease.When the Ca/Si/S ratio is 1:0.85:0.10,the strength reaches the peak and is lower than the blank group.(2)The microstructure indicates the addition of titanium gypsum can effectively stimulate the activity of fly ash.Still,too much or too little titanium gypsum will hamper concrete strength development.(3)Titanium gypsum concrete’s nuclear magnetic resonance T2 spectrum has two characteristic peaks.With the Ca/Si/S ratio decreasing,the micropores in the concrete expand towards the macropores.The compressive strength is negatively correlated with the proportion of macropores and is positively correlated with the proportion of no-capillary pores.展开更多
This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers ...This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers obtained from the local market. The fine aggregates utilized in this study were sourced from Sylhet sand, whereas the coarse aggregates were comprised of boulder crushed stone chips. The experimental procedures adhered to the requirements outlined by ASTM. A comprehensive investigation was conducted on a range of concrete compositions that used diverse chemical admixtures. The slump test was performed at regular intervals of 15 minutes until the slump value reached or fell below 3 cm after the mixing of the concrete. In the scenario involving two-stage admixture dosage, the second stage of admixture was introduced once the slump reached or dropped below 3 cm, following which the casting process was initiated. The process of curing concrete specimens consists of two distinct stages: the main stage and the final stage. Cylindrical specimens, with a diameter of 4 inches and a height of 8 inches, were manufactured for the purpose of evaluating their compressive strength at both 7 and 28 days. During the experimental trials, the water-cement (w/c) ratio was kept consistent, while different dosages of admixture were applied. The findings of the study indicate that the utilization of a two-stage dose of admixture resulted in enhanced and extended workability, along with higher strength of the concrete in comparison to specimens that did not incorporate any admixture. This research study enhances the comprehension of optimizing qualities of ready-mix concrete (RMC) by varying the superplasticizer, providing useful insights for the building sector.展开更多
基金Project(N110607002)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(51074052)supported by the National Natural Science Foundation of China
文摘The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law hardening curve.Two formulas to estimate the strain hardening exponent n for a special Y/T were obtained by least squared regression method and the influence of Y/T on n was analyzed.As an application of n-Y/T expression,the analytical solutions of burst pressure for X70 pipeline without and with corrosion defects were also obtained.The results indicate that the burst pressure of defect-free X70 pipe without corrosion defects is a function of the Y/T,pipe geometry t0/D0 and engineering tensile strength,and increases as Y/T or t0/D0 increases; whilst the burst pressure of corroded X70 pipe decreases with the increase of defect depths,d/t.Comparisons indicate that the present analytical solutions closely match available experimental and numerical data.
基金Project(2023YFC2907403)supported by the National Key R&D Program of ChinaProject(52074021)supported by the National Natural Science Foundation of China+1 种基金Project(2242045)supported by Beijing Natural Science Foundation,ChinaProject(ZD202216)supported by the Beijing Association of Higher Education,China。
文摘The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.
文摘Background: Netball is a popular sport. Due to high impact and quick movement, there is an enormous load on the lower extremities which increases the risk for injury. Aim: The aim of this study was to investigate the relationship between the quadricep and hamstring strength and the prevalence of lower extremity injuries in netball players. Setting: Twenty-five female netball players (age: 20.8 ± 1.4 years) voluntarily participated. Methods: The Cybex Isokinetic dynamometer was used to determine concentric knee torques. Quadriceps:hamstring strength ratio was determined. Occurrence of lower extremity injuries was documented bi-weekly. Results: Medium effect sizes were noted for flexion torque:work for the left leg and for the quadriceps:hamstring ratio (≥60%) for the right leg. All the other measured variables have a small effect size. 18.75% of lower extremity injuries and ConQ:ConH of Conclusion: Injuries to the ankle and knee are especially common among netball players. Hamstring and quadriceps muscle asymmetry (>10%) were found to be a potential indicator of lower extremity injury. Contribution: This study highlights awareness on lower extremity injuries and the strength ratio between the quadriceps and hamstrings. This can aid coaches and netball players to lower the risk for injuries and thus improve individual- and team performance.
基金Funded by the National Natural Science Foundation of China(No.51908183)the Natural Science Foundation of Hebei Province(No.E2023202101)。
文摘The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.
文摘This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.
文摘To test the influence of binder strength, porous concretes with 4 binder strengths between 30.0-135.0 MPa and 5 void ratios between 15%-35% were tested. The results indicated that for the same aggregate, the rates of strength reduction due to the increases in void ratio were the same for binders with different strengths. To study the influence of aggregate size, 3 single size aggregates with nominal sizes of 5.0, 13.0 and 20.0 mm (Nos. 7, 6 and 5 according to JIS A 5001) were used to make porous concrete. The strengths of porous concrete are found to be dependent on aggregate size. The rate of strength reduction of porous concrete with small aggregate size is found to be higher than that with larger aggregate size. At the same void ratio, the strength of porous concrete with large aggregate is larger than that with small aggregate. The general equations for porous concrete are related to compressive strength and void ratio for different binder strengths and aggregate sizes.
文摘For sites susceptible to liquefaction induced lateral spreading during a probable earthquake, geotechnical engineers often need to know the undrained residual shear strength of the liquefied soil deposit to estimate lateral spreading displacements, and the forces acting on the piles from the liquefied soils in order to perform post liquefaction stability analyses. The most commonly used methods to estimate the undrained residual shear strength (Su~) of liquefied sand deposits are based on the correlations determined from liquefaction induced flow failures with SPT and CPT data. In this study, 44 lateral spread case histories are analyzed and a new relationship based on only lateral spread case histories is recommended, which estimates the residual shear strength ratio of the liquefiable soil layer from normalized shear wave velocity. The new proposed method is also utilized to estimate the residual lateral displacement of an example bridge problem in an area susceptible to lateral spreading in order to provide insight into how the proposed relationship can be used in geotechnical engineering practice.
文摘Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile strength(ITS)and California bearing ratio(CBR)and as well as the evaluation of shear strength parameters obtained from the triaxial test would be very effective at geotechnical construction sites.This research was aimed at investigating the influence of natural fibers as sustainable ones including basalt(BS)and bagasse(BG)as well as synthetic polyester(PET)fibers on the strength behavior of clayey soil.To this end,the effects of various fiber contents(0.5%,1%and 2%)and lengths(2.5 mm,5 mm and 7.5 mm)were experimentally evaluated.By conducting ITS and CBR tests,it was found that increasing fiber content and length had a significant influence on CBR and ITS values.Moreover,2%of 7.5 mm-long fibers led to the largest values of CBR and ITS.The CBR values of soil reinforced with PET,BS,and BG fibers were determined as 19.17%,15.43%and 13.16%,respectively.The ITS values of specimens reinforced with PET,BS,and BG fibers were reported as 48.57 kPa,60.7 kPa and 47.48 kPa,respectively.The results of the triaxial compression test revealed that with the addition of BS fibers,the internal friction angle increased by about 100%,and with the addition of PET fibers,the cohesion increased by about 70%.Moreover,scanning electron microscope(SEM)analysis was employed to confirm the findings.The relationship between CBR and ITS values,obtained via statistical analysis and used for the optimum design of road pavement layers,demonstrated that these parameters had high correlation coefficients.The outcomes of multiple linear regression and sensitivity analysis also confirmed that the fiber content had a greater effect on CBR and ITS values than fiber length.
基金National Key R&D Program of China under Grant No.2017YFC1500601National Natural Science Foundation of China under Grant Nos.51678541 and 51708523Scientific Research Fund of the Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2016A01。
文摘The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.
文摘The variation regularity of coke strength was investigated in terms of the genetic factors and petrographic parameters of coal in collaboration with the technical properties of coal. A concept of inert holding ratio of coal was proposed. There is an optimal inert holding ratio for different ranks of coals for making coke with highest combined strength. The additive property of inert holding ratio under normal conditions was demonstrated with actual examples of coal blending.Thus it is possible to predict the combined strength of coke through reflectance, content of inert components and caking index diagram system.
文摘The multipole mixing ratios have been calculated by a2-ratio method, from levels of 93Mo(p, nγ) reaction. The branching ratios of such γ-transitions are used to calculate the total gamma widths. Besides, the transition strengths and probabilities have been calculated for γ-transitions from excited states whose life times have been reported previously. The results are found to be in general in good agreement with the previous results populated from the previous work.
文摘In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of this study is therefore to investigate if the concrete produced with rationalized mix ratio can be adopted as conventional mix ratio in terms of minimum required compression strength of concrete for buildings. Specifically this work compared the conventional mix ratio of 350 kg of cement: 400 liters of sand: 800 liters of gravel for a cubic meter and the rationalized batch of 350 kg of cement: 600 liters of sand: 600 liters of 5/15 gravel, 15/25 gravel and a combination of 5/15 + 15/25 gravel. Average compressive tests’results for both the conventional and the rationalized mix ratios were found to meet the minimum compressive strength of 65% at 7 days, 90% at 14 days and 99% at 28 days for gravel size combination 5/15 + 15/25. Single size gravel of 5/15 and 15/25 did not meet the minimum required compressive strength of 20 N/mm<sup>2</sup> for the rationalized mix ratio at 28 days curing based on the minimum compressive strength required, this study arrives at the conclusion that the equal volumes of sand and gravel mix ratio of 350 kg/m<sup>3</sup> of cement: 600 liters of sand: 600 liters of gravel mix ratio can be adopted as a conventional concrete mix ratio for gravel size 5/15 + 15/25.
基金National Natural Science Foundation of China(5210090341)Natural Science Foundation of Henan Province(202300410270)Fund of Innovative Education Program for Graduate Students at North China University of Water Resources and Electric Power,China(Grading No.YK-2021-39).
文摘Based on the high sulfur content in titanium gypsum,the concept of the calcium-silicon-sulfur(Ca/Si/S)ratio was proposed.The Ca/Si/S ratio of concrete was adjusted by changing the titanium gypsum,fly ash,and cement con-tent.The effects of different Ca/Si/S ratios on the mechanical properties,hydration products,and concrete micro-structure were investigated by nuclear magnetic resonance,uniaxial compression,and scanning electron microscopy.The result shows:(1)The compressive strength of concrete mixed with titanium gypsum increases first and then decreases with the Ca/Si/S ratio decrease.When the Ca/Si/S ratio is 1:0.85:0.10,the strength reaches the peak and is lower than the blank group.(2)The microstructure indicates the addition of titanium gypsum can effectively stimulate the activity of fly ash.Still,too much or too little titanium gypsum will hamper concrete strength development.(3)Titanium gypsum concrete’s nuclear magnetic resonance T2 spectrum has two characteristic peaks.With the Ca/Si/S ratio decreasing,the micropores in the concrete expand towards the macropores.The compressive strength is negatively correlated with the proportion of macropores and is positively correlated with the proportion of no-capillary pores.
文摘This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers obtained from the local market. The fine aggregates utilized in this study were sourced from Sylhet sand, whereas the coarse aggregates were comprised of boulder crushed stone chips. The experimental procedures adhered to the requirements outlined by ASTM. A comprehensive investigation was conducted on a range of concrete compositions that used diverse chemical admixtures. The slump test was performed at regular intervals of 15 minutes until the slump value reached or fell below 3 cm after the mixing of the concrete. In the scenario involving two-stage admixture dosage, the second stage of admixture was introduced once the slump reached or dropped below 3 cm, following which the casting process was initiated. The process of curing concrete specimens consists of two distinct stages: the main stage and the final stage. Cylindrical specimens, with a diameter of 4 inches and a height of 8 inches, were manufactured for the purpose of evaluating their compressive strength at both 7 and 28 days. During the experimental trials, the water-cement (w/c) ratio was kept consistent, while different dosages of admixture were applied. The findings of the study indicate that the utilization of a two-stage dose of admixture resulted in enhanced and extended workability, along with higher strength of the concrete in comparison to specimens that did not incorporate any admixture. This research study enhances the comprehension of optimizing qualities of ready-mix concrete (RMC) by varying the superplasticizer, providing useful insights for the building sector.