The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l...The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.展开更多
对于环境中存在的各种类型能量源,其往往具有不同的阻抗特性以及输出功率范围。为了提高能量收集系统的能量萃取能力,合理的接口电路设计是关键。基于此,通过对环境中光伏(Photovoltaic,PV)能量源微弱直流特性以及高效率收集和转化的研...对于环境中存在的各种类型能量源,其往往具有不同的阻抗特性以及输出功率范围。为了提高能量收集系统的能量萃取能力,合理的接口电路设计是关键。基于此,通过对环境中光伏(Photovoltaic,PV)能量源微弱直流特性以及高效率收集和转化的研究,在传统开路电压法(Open-Circuit Voltage,OCV)的基础上,结合输入电压纹波控制,提出了一种可实时最大功率点追踪(Maximum Power Point Tracking,MPPT)的预估算法。该预估算法根据能量源的输出特性,采用了分数开路电压法(Fractional Open-Circuit Voltage,FOCV),并根据纹波大小动态调节变换器的工作模式,实现阻抗匹配。为了尽可能减小因采样带来的能量损失,采用可片上全集成的较小的采样电容,并逐周期的进行开路电压采样和计算,实现了对源功率变化的高精度追踪。仿真结果表明,所提出的追踪算法能够实时监测能量源的状态,具有高的追踪速度和追踪精度,且采样时间仅需100 ns。能量源功率在1μW~10 mW范围内变化时,最短的追踪时间仅需4.37μs,追踪精度可达99.7%。展开更多
随着特高压直流输电技术飞速发展,换流阀阀基电子VBE(valve base electronics)设备的稳定性对于保障直流输电的可靠性和效率至关重要。VBE设备电路板缺陷,如短路和失效元件,直接影响直流系统稳定性,而现有的检测方法,包括人工显微镜检...随着特高压直流输电技术飞速发展,换流阀阀基电子VBE(valve base electronics)设备的稳定性对于保障直流输电的可靠性和效率至关重要。VBE设备电路板缺陷,如短路和失效元件,直接影响直流系统稳定性,而现有的检测方法,包括人工显微镜检查和自动检测算法,常受限于效率低和准确性不足。针对该问题,提出一种基于点模式匹配的自动视觉检测方法,通过生成代表关键区域的点模式并进行匹配来提高检测的效率和准确率。通过实验验证,所提方法在检测速度和准确性方面相较于传统方法有显著提升,适合于生产线上的快速质量控制,为提高直流输电设备的质量提供了有效的技术方案。展开更多
文摘The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.
文摘对于环境中存在的各种类型能量源,其往往具有不同的阻抗特性以及输出功率范围。为了提高能量收集系统的能量萃取能力,合理的接口电路设计是关键。基于此,通过对环境中光伏(Photovoltaic,PV)能量源微弱直流特性以及高效率收集和转化的研究,在传统开路电压法(Open-Circuit Voltage,OCV)的基础上,结合输入电压纹波控制,提出了一种可实时最大功率点追踪(Maximum Power Point Tracking,MPPT)的预估算法。该预估算法根据能量源的输出特性,采用了分数开路电压法(Fractional Open-Circuit Voltage,FOCV),并根据纹波大小动态调节变换器的工作模式,实现阻抗匹配。为了尽可能减小因采样带来的能量损失,采用可片上全集成的较小的采样电容,并逐周期的进行开路电压采样和计算,实现了对源功率变化的高精度追踪。仿真结果表明,所提出的追踪算法能够实时监测能量源的状态,具有高的追踪速度和追踪精度,且采样时间仅需100 ns。能量源功率在1μW~10 mW范围内变化时,最短的追踪时间仅需4.37μs,追踪精度可达99.7%。
文摘随着特高压直流输电技术飞速发展,换流阀阀基电子VBE(valve base electronics)设备的稳定性对于保障直流输电的可靠性和效率至关重要。VBE设备电路板缺陷,如短路和失效元件,直接影响直流系统稳定性,而现有的检测方法,包括人工显微镜检查和自动检测算法,常受限于效率低和准确性不足。针对该问题,提出一种基于点模式匹配的自动视觉检测方法,通过生成代表关键区域的点模式并进行匹配来提高检测的效率和准确率。通过实验验证,所提方法在检测速度和准确性方面相较于传统方法有显著提升,适合于生产线上的快速质量控制,为提高直流输电设备的质量提供了有效的技术方案。