针对传统物体检测算法识别堆叠工件存在准确率低以及漏检的问题,提出一种基于改进YOLOv3算法的堆叠工件检测方法。首先,引入Inception结构增强特征检测网络的特征提取能力,提高堆叠工件检测的准确率;其次,引用增强型特征金字塔结构(enha...针对传统物体检测算法识别堆叠工件存在准确率低以及漏检的问题,提出一种基于改进YOLOv3算法的堆叠工件检测方法。首先,引入Inception结构增强特征检测网络的特征提取能力,提高堆叠工件检测的准确率;其次,引用增强型特征金字塔结构(enhanced feature pyramid network,EFPN),提高模型多尺度特征融合能力,改善算法漏检率高的问题;最后,利用K-means聚类融合交并比损失函数(intersection over union,IOU)重新确定工件锚框,解决YOLOv3网络预设锚框尺寸不适合现有工件的问题。实验结果表明,改进算法均值平均精确度(mean average precision,mAP)达到92.89%,相较于原始YOLOv3算法提高了5.32%,F1值为0.95,召回率为93.33%,精确率为97.65%,满足堆叠工件检测的指标要求。展开更多
矿用芳纶带传送设备在长期运输过程中会产生划伤、砸伤等损伤。芳纶带表面缺陷需要及时的检测,而传统机器视觉检测精度低、受背景干扰比较大、漏检率和误检率较高,因此,本文提出运用深度学习神经网络检测,查看一次统一的实时对象检测(yo...矿用芳纶带传送设备在长期运输过程中会产生划伤、砸伤等损伤。芳纶带表面缺陷需要及时的检测,而传统机器视觉检测精度低、受背景干扰比较大、漏检率和误检率较高,因此,本文提出运用深度学习神经网络检测,查看一次统一的实时对象检测(you only look once unified real-time object detection,YOLO)。在现场的测试中,YOLOV3算法对小目标的识别精度比较低,敏感度不够,本文优化了YOLOV3算法,网络信息的传输过程,由ResNet(残差网络)替换为特征表述更为完整的DenseNet(密集连接网络),同时运用了卷积降维进行优化,减少检测时间。在现场经过比对,优化后的YOLOV3算法相较于通过频域变换和Otsu算法,检测精度提高了26%,对比没有优化的YOLOV3算法,检测精度提高了15%,通过在现场的实验,该方法有效地改善了对于芳纶带小目标的瑕疵检测。展开更多
文摘针对传统物体检测算法识别堆叠工件存在准确率低以及漏检的问题,提出一种基于改进YOLOv3算法的堆叠工件检测方法。首先,引入Inception结构增强特征检测网络的特征提取能力,提高堆叠工件检测的准确率;其次,引用增强型特征金字塔结构(enhanced feature pyramid network,EFPN),提高模型多尺度特征融合能力,改善算法漏检率高的问题;最后,利用K-means聚类融合交并比损失函数(intersection over union,IOU)重新确定工件锚框,解决YOLOv3网络预设锚框尺寸不适合现有工件的问题。实验结果表明,改进算法均值平均精确度(mean average precision,mAP)达到92.89%,相较于原始YOLOv3算法提高了5.32%,F1值为0.95,召回率为93.33%,精确率为97.65%,满足堆叠工件检测的指标要求。
文摘矿用芳纶带传送设备在长期运输过程中会产生划伤、砸伤等损伤。芳纶带表面缺陷需要及时的检测,而传统机器视觉检测精度低、受背景干扰比较大、漏检率和误检率较高,因此,本文提出运用深度学习神经网络检测,查看一次统一的实时对象检测(you only look once unified real-time object detection,YOLO)。在现场的测试中,YOLOV3算法对小目标的识别精度比较低,敏感度不够,本文优化了YOLOV3算法,网络信息的传输过程,由ResNet(残差网络)替换为特征表述更为完整的DenseNet(密集连接网络),同时运用了卷积降维进行优化,减少检测时间。在现场经过比对,优化后的YOLOV3算法相较于通过频域变换和Otsu算法,检测精度提高了26%,对比没有优化的YOLOV3算法,检测精度提高了15%,通过在现场的实验,该方法有效地改善了对于芳纶带小目标的瑕疵检测。