期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Benchmarking YOLOv5 models for improved human detection in search and rescue missions
1
作者 Namat Bachir Qurban Ali Memon 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期70-80,共11页
Drone or unmanned aerial vehicle(UAV)technology has undergone significant changes.The technology allows UAV to carry out a wide range of tasks with an increasing level of sophistication,since drones can cover a large ... Drone or unmanned aerial vehicle(UAV)technology has undergone significant changes.The technology allows UAV to carry out a wide range of tasks with an increasing level of sophistication,since drones can cover a large area with cameras.Meanwhile,the increasing number of computer vision applications utilizing deep learning provides a unique insight into such applications.The primary target in UAV-based detection applications is humans,yet aerial recordings are not included in the massive datasets used to train object detectors,which makes it necessary to gather the model data from such platforms.You only look once(YOLO)version 4,RetinaNet,faster region-based convolutional neural network(R-CNN),and cascade R-CNN are several well-known detectors that have been studied in the past using a variety of datasets to replicate rescue scenes.Here,we used the search and rescue(SAR)dataset to train the you only look once version 5(YOLOv5)algorithm to validate its speed,accuracy,and low false detection rate.In comparison to YOLOv4 and R-CNN,the highest mean average accuracy of 96.9%is obtained by YOLOv5.For comparison,experimental findings utilizing the SAR and the human rescue imaging database on land(HERIDAL)datasets are presented.The results show that the YOLOv5-based approach is the most successful human detection model for SAR missions. 展开更多
关键词 Unmanned aerial vehicle(UAV) Search and rescue(SAR) you look only once(YOLO)model you only look once version 5 (yolov5)
下载PDF
基于改进YOLOv5s的输电线路异物检测
2
作者 许永华 唐鹤卿 肖伸平 《电工技术》 2023年第21期54-57,62,共5页
针对输电线路背景复杂导致异物检测性能不高的问题,提出一种基于改进YOLOv5s的输电线路异物检测方法。该方法引入CBAM注意力机制并构建了基于Transformer架构的C3TR层,增强了模型筛选关键特征的能力;然后使用动态的WIoU v3函数作为改进... 针对输电线路背景复杂导致异物检测性能不高的问题,提出一种基于改进YOLOv5s的输电线路异物检测方法。该方法引入CBAM注意力机制并构建了基于Transformer架构的C3TR层,增强了模型筛选关键特征的能力;然后使用动态的WIoU v3函数作为改进方法的损失函数,解决模型检测精度下降的问题。利用输电线路异物数据集进行训练和测试,结果表明改进后的模型在各项检测性能均有提升,具有较好的检测精度和泛化能力,能满足输电线路异物检测的应用要求。 展开更多
关键词 输电线路 yolov5s C3TR层 WIoU v3函数 异物检测
下载PDF
Power Plant Indicator Light Detection System Based on Improved YOLOv5 被引量:1
3
作者 Yunzuo Zhang Kaina Guo 《Journal of Beijing Institute of Technology》 EI CAS 2022年第6期605-612,共8页
Electricity plays a vital role in daily life and economic development.The status of the indicator lights of the power plant needs to be checked regularly to ensure the normal supply of electricity.Aiming at the proble... Electricity plays a vital role in daily life and economic development.The status of the indicator lights of the power plant needs to be checked regularly to ensure the normal supply of electricity.Aiming at the problem of a large amount of data and different sizes of indicator light detection,we propose an improved You Only Look Once vision 5(YOLOv5)power plant indicator light detection algorithm.The algorithm improves the feature extraction ability based on YOLOv5s.First,our algorithm enhances the ability of the network to perceive small objects by combining attention modules for multi-scale feature extraction.Second,we adjust the loss function to ensure the stability of the object frame during the regression process and improve the conver-gence accuracy.Finally,transfer learning is used to augment the dataset to improve the robustness of the algorithm.The experimental results show that the average accuracy of the proposed squeeze-and-excitation YOLOv5s(SE-YOLOv5s)algorithm is increased by 4.39%to 95.31%compared with the YOLOv5s algorithm.The proposed algorithm can better meet the engineering needs of power plant indicator light detection. 展开更多
关键词 you only look once vision 5(yolov5) attention module loss function transfer learning object detection system
下载PDF
基于图像低维特征融合的航拍小目标检测模型 被引量:1
4
作者 蔡逢煌 张家翔 黄捷 《模式识别与人工智能》 EI CSCD 北大核心 2024年第2期162-171,共10页
针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图... 针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图像空间维度信息的同时降低模型参数量.改进YOLOv5特征金字塔网络结构,融合浅层网络中的特征图,增加模型对图像低维有效信息的表达能力,进而提升小目标检测精度.同时为了降低航拍图像中复杂背景带来的干扰,引入无参平均注意力模块,同时关注图像的空间注意力与通道注意力;引入VariFocal Loss,降低负样本在训练过程中的权重占比.在VisDrone数据集上的实验验证文中模型的有效性,该模型在有效提升检测精度的同时明显降低复杂度. 展开更多
关键词 you only look once Version5(yolov5) 小目标检测 注意力机制 损失函数
下载PDF
增强细节信息特征提取的鱼类个体识别算法 被引量:1
5
作者 王伟芳 殷健豪 +1 位作者 高春奇 刘梁 《现代电子技术》 北大核心 2024年第2期183-186,共4页
在鱼类个体识别的实际应用场景中,由于水下环境噪声大、鱼体角度倾斜以及类内特征差异不明显,导致卷积神经网络特征提取能力低下,影响识别准确性。针对该问题,提出一种增强细节信息特征提取的鱼类个体识别算法(FishNetv1)。改进YOLOv5... 在鱼类个体识别的实际应用场景中,由于水下环境噪声大、鱼体角度倾斜以及类内特征差异不明显,导致卷积神经网络特征提取能力低下,影响识别准确性。针对该问题,提出一种增强细节信息特征提取的鱼类个体识别算法(FishNetv1)。改进YOLOv5网络并建立损失函数,优化鱼类个体目标的检测结果。主干网络在MobileNet‐v1的基础上完成优化,改进深度卷积层,更新ReLU激活函数,使用Leaky ReLU保留负值特征信息,实现特征信息的获取。在网络结构末端全连接层前增加特征加权层,去除卷积神经网络中常用的池化层,完成图像细节信息的增强和特征提取。实验结果表明,所设计模型在DLOUFish数据集上的平均准确率为92.46%,最高准确率达到95.69%。 展开更多
关键词 鱼类个体识别 关键点检测 特征提取 MobileNet‐v1 yolov5网络 特征加权
下载PDF
基于YOLOv5的瓶盖封装缺陷轻量化检测算法 被引量:2
6
作者 赵磊 矫立宽 +2 位作者 翟冉 李彬 许美叶 《激光与光电子学进展》 CSCD 北大核心 2023年第22期131-140,共10页
为解决白酒瓶盖封装表面质量检测和算法参数庞大难部署的问题,对YOLOv5s进行改进并提出了更轻量化和高精度的SEGC-YOLO算法。首先,采用ShuffleNet V2替换原始骨干网络,有效简化参数,引入高效通道注意力机制增强骨干网络。再使用基于Ghos... 为解决白酒瓶盖封装表面质量检测和算法参数庞大难部署的问题,对YOLOv5s进行改进并提出了更轻量化和高精度的SEGC-YOLO算法。首先,采用ShuffleNet V2替换原始骨干网络,有效简化参数,引入高效通道注意力机制增强骨干网络。再使用基于GhostNet改进的GhostConv和C3-Ghost模块增强颈部网络,减少颈部参数量。另外,使用CARAFE算子替代最近邻插值上采样算子,利用自适应内容感知的上采样预测核提升颈部网络的信息表达能力,进而提升检测精度。最后,训练应用Adam梯度优化器来提高检测精度。实验结果表明:所提SEGC-YOLO算法在不同交并比(IoU)阈值下的平均精度均值mAP@0.5为84.1%和mAP@0.5∶0.95为49.0%,分别优于原始YOLOv5s算法1.2个百分点和0.5个百分点,并且浮点运算数(FLOPs)比原始算法减少了69.94%、参数量减少了71.15%和模型文件大小减小了69.66%,更加精准和轻量化。所提SEGC-YOLO可以快速、精准地检测瓶盖表面缺陷,为相关领域快速缺陷检测和设备部署提供了数据和算法支持。 展开更多
关键词 缺陷检测 轻量化算法 yolov5 ShuffleNet V2 GhostNet CARAFE算子
原文传递
基于改进YOLOv5s的可回收垃圾检测算法 被引量:6
7
作者 罗安能 万海斌 +1 位作者 司志巍 覃团发 《激光与光电子学进展》 CSCD 北大核心 2023年第10期120-127,共8页
垃圾回收的好处有很多,有助于保护水土资源,提高居民的生活环境质量,加快绿色循环经济发展,然而传统的垃圾回收需要大量人力和物力。结合ShuffleNet v2与深度可分离卷积,提出一个更轻量化的YOLOv5s改进模型,将其用于对可回收垃圾的分类... 垃圾回收的好处有很多,有助于保护水土资源,提高居民的生活环境质量,加快绿色循环经济发展,然而传统的垃圾回收需要大量人力和物力。结合ShuffleNet v2与深度可分离卷积,提出一个更轻量化的YOLOv5s改进模型,将其用于对可回收垃圾的分类和定位。实验结果表明:改进模型的参数量仅为原始模型参数量的38.98%;在输入分辨率为640×640时,改进模型的平均精度均值(mAP)为94.01%,比原始YOLOv5s高出1.91个百分点;在速度上,通过在Jetson Nano硬件上进行部署,改进模型的前传耗时比原始YOLOv5s少了11.5%。另外,与目前常见的主流的目标检测模型对比,所提改进模型也具有很好的表达可回收垃圾特征的能力。 展开更多
关键词 垃圾回收 yolov5s ShuffleNet v2 深度可分离卷积
原文传递
一种基于视觉识别的乒乓球捡球机设计与开发
8
作者 李文杰 缪肖凝 +2 位作者 陈振宇 肖开研 李一染 《上海师范大学学报(自然科学版)》 2023年第2期248-255,共8页
针对目前乒乓球捡球机捡球机构不完善、乒乓球识别算法适应性差的问题,提出一种基于视觉识别的智能乒乓球捡球机.采用树莓派4B开发板作为控制单元,利用轻量化的you only look once(YOLO)v5s算法,对乒乓球进行识别;通过扇叶式集球机构,... 针对目前乒乓球捡球机捡球机构不完善、乒乓球识别算法适应性差的问题,提出一种基于视觉识别的智能乒乓球捡球机.采用树莓派4B开发板作为控制单元,利用轻量化的you only look once(YOLO)v5s算法,对乒乓球进行识别;通过扇叶式集球机构,将乒乓球卷入收纳篮.实验结果表明:在乒乓球数小于150个的情况下,该捡球机的识别精确率与查全率均可达到95%以上,漏检率控制在7%以下.同时,集球机构结构简单、可靠、效率高,整体设计方案具有较好的实际应用价值. 展开更多
关键词 乒乓球捡球机 树莓派4B 目标检测 you only look once(YOLO)v5s算法 扇叶式集球机构
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部