期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于深度学习YOLOX算法的混凝土构件裂缝智能化检测方法
1
作者 刘珂铖 谢群 李雁军 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第3期341-349,共9页
针对现有混凝土构件裂缝人工检测操作不仅费时、费力,而且易出现错检、误检、漏检,以及部分位置难以开展检测的问题,提出一种基于深度学习YOLOX(You Only Look Once)算法的混凝土构件裂缝智能化检测方法;首先采集、整理包含各类混凝土... 针对现有混凝土构件裂缝人工检测操作不仅费时、费力,而且易出现错检、误检、漏检,以及部分位置难以开展检测的问题,提出一种基于深度学习YOLOX(You Only Look Once)算法的混凝土构件裂缝智能化检测方法;首先采集、整理包含各类混凝土构件的典型裂缝图像,并通过图像数据增强建立Pascal VOC数据集,然后基于Facebook公司开发的深度学习框架Pytorch,利用数据集训练YOLOX算法,并进行裂缝识别和验证;将训练完成后YOLOX算法移植至搭载安卓系统的手机端,进行现场实时检测操作。结果表明:在迭代次数为700时,混凝土构件裂缝识别精度可达88.84%,能有效筛分混凝土构件表面裂缝,并排除其他干扰项,证明了所提出的方法对裂缝具有较高的识别精度和广泛的适用性;经试验测试,移植至手机端的YOLOX算法能在提升便携性的同时保证高效、准确的检测效果,具有良好的应用前景。 展开更多
关键词 深度学习 yolox(you only look once)算法 混凝土构件 裂缝识别
下载PDF
基于改进YOLOX的X射线违禁物品检测 被引量:4
2
作者 武连全 楚宪腾 +3 位作者 杨海涛 牛瑾琳 韩虹 王华朋 《红外技术》 CSCD 北大核心 2023年第4期427-435,共9页
在安全检查过程中快速准确地识别违禁物品有利于维护公共安全。针对X射线行李图像中存在的物品堆叠变形、复杂背景干扰、小尺寸违禁物品检测等问题,提出一种改进模型用于违禁物品检测。改进基于YOLOX模型进行,首先在主干网络中引入注意... 在安全检查过程中快速准确地识别违禁物品有利于维护公共安全。针对X射线行李图像中存在的物品堆叠变形、复杂背景干扰、小尺寸违禁物品检测等问题,提出一种改进模型用于违禁物品检测。改进基于YOLOX模型进行,首先在主干网络中引入注意力机制加强神经网络对违禁品的感知能力;其次在Neck部分改进多尺度特征融合方式,在特征金字塔结构后加入Bottom-up结构,增强网络细节表现能力以此提高对小目标的识别率;最后针对损失函数计算的弊端改进IOU损失的计算方式,并根据违禁物品检测任务特点改进各类损失函数的权重,增大对网络误判的惩罚来优化模型。使用该改进模型在SIXray数据集上进行实验,m AP达到89.72%,FPS到达111.7 frame/s具备快速性和有效性,所提模型与阶段主流模型相比准确率和检测速度都有所提升。 展开更多
关键词 yolox x射线图像 违禁品 注意力机制
下载PDF
基于改进YOLOX的变电站工人防护设备检测研究 被引量:5
3
作者 崔铁军 郭大龙 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第4期201-206,共6页
为解决电气工人防护设备检测问题,通过改进YOLOX算法,提出检测工作人员防护设备的模型。首先在预测部分改进损失函数,为解决损失函数计算存在的缺陷,对IOU损失的计算方法进行改进,根据防护设备任务特性,通过调整各种类型损失函数的权重... 为解决电气工人防护设备检测问题,通过改进YOLOX算法,提出检测工作人员防护设备的模型。首先在预测部分改进损失函数,为解决损失函数计算存在的缺陷,对IOU损失的计算方法进行改进,根据防护设备任务特性,通过调整各种类型损失函数的权重,增加对模型误判的惩罚,对模型进行优化;其次在算法主干网络中引入CBAM注意力模块提高神经网络对工人防护设备的感知能力;最后在算法Neck部分,将UpSample结构用于多尺度特征融合,加强网络的细节表达能力,从而提升对小目标困难样本的检测精度。研究结果表明:改进后的YOLOX模型平均精度均值达到87.24%,与已有YOLOX模型相比提升2.46%,具备有效性,适用于变电站工人防护设备检测。研究结果可为电气工人提供更高的防护装备检测精度。 展开更多
关键词 电气安全 改进yolox 变电站 工人防护 防护设备检测 注意力机制
下载PDF
基于改进YOLOX算法的X射线图像违禁品检测方法 被引量:1
4
作者 袁金豪 张南峰 +1 位作者 阮洁珊 高向东 《激光技术》 CAS CSCD 北大核心 2023年第4期547-552,共6页
为了实现自动检测X射线图像中的违禁品,解决相互遮挡、目标相近和小目标违禁品检测难的问题,提出一种基于改进的你只观察一次(YOLOX)算法的X射线图像违禁品检测方法。首先在YOLOX的主干网络低层中引入使用大核注意力构建的空间注意力,... 为了实现自动检测X射线图像中的违禁品,解决相互遮挡、目标相近和小目标违禁品检测难的问题,提出一种基于改进的你只观察一次(YOLOX)算法的X射线图像违禁品检测方法。首先在YOLOX的主干网络低层中引入使用大核注意力构建的空间注意力,提取低层特征图的远距离依赖信息和纹理信息,之后在主干网络的中层和高层增加卷积块的注意力模块以增强感兴趣区域信息并抑制无用信息;该方法在公开的安全检查X射线数据集上进行实验,同时为改善模型的鲁棒性,在训练前70个周期使用Mosaic数据增强方法。结果表明,改进的模型较基本模型增加少量的参数和计算量,均值平均精度增加2.45%,提升到87.88%,平均推理速率为58.5 frame/s。该研究为即时自动检测X射线图像中违禁品提供了有益的参考。 展开更多
关键词 x射线光学 违禁品检测 yolox算法 大核注意力 空间注意力 卷积块的注意力模块
下载PDF
基于改进YOLOX的变电站设备缺陷检测方法 被引量:3
5
作者 罗箫瑜 张志 《吉林大学学报(信息科学版)》 CAS 2023年第5期848-857,共10页
为减轻电力工作人员的巡检负担,实现变电站智能巡检,对变电站设备缺陷检测算法进行了研究。首先,利用数据增强方法对有限的初始数据集进行扩充,利用多种图像处理方法增加数据集的复杂度,生成考虑复杂光照环境的数据集;然后,采用自适应... 为减轻电力工作人员的巡检负担,实现变电站智能巡检,对变电站设备缺陷检测算法进行了研究。首先,利用数据增强方法对有限的初始数据集进行扩充,利用多种图像处理方法增加数据集的复杂度,生成考虑复杂光照环境的数据集;然后,采用自适应空间特征融合(ASFF:Adaptively Spatial Feature Fusion)的方法缓解特征金字塔中不同尺度特征的不一致性问题,并引入Focal损失函数作为置信度损失函数以缓解正负样本不平衡的问题,利用改进的YOLOX-s(You Only Look Once X-s)网络模型设计了变电站缺陷检测算法;最后,将改进的YOLOX-s网络模型与其他深度学习算法的检测效果进行对比,实验结果表明,改进的YOLOX-s网络模型的综合检测效果较好,准确性和实时性均可以满足变电站设备缺陷检测任务。 展开更多
关键词 变电站 设备缺陷检测 数据增强 yolox网络
下载PDF
改进YOLOv5s的X光安检图像违禁物品检测算法 被引量:3
6
作者 向娇 李国权 +1 位作者 吴建 林金朝 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2023年第5期943-951,共9页
针对现有X光安检图像中违禁物品检测精度低的问题,基于YOLOv5s(you only look once version 5 small)提出了一种改进的违禁物品检测算法。利用重参数思想设计了一种Rep模块以协助YOLOv5s主干网络提取更多特征信息,在不增加推理时间的基... 针对现有X光安检图像中违禁物品检测精度低的问题,基于YOLOv5s(you only look once version 5 small)提出了一种改进的违禁物品检测算法。利用重参数思想设计了一种Rep模块以协助YOLOv5s主干网络提取更多特征信息,在不增加推理时间的基础上提高算法检测精度。同时,在YOLOv5s颈部的路径聚合网络中插入2个通道注意力机制压缩-激励模块,加强通道间的相关性,提高整体网络的检测效果。在SIXray数据集上的实验结果表明,在不增加检测时间的基础上,改进的YOLOv5s算法比原始算法在平均精度均值(mAP)、宏精确率(macro precision)、宏召回率(macro recall)和宏F1(macro-F1)这4个评价指标上分别提升了2.6、2.0、4.0和3.0个百分点。 展开更多
关键词 深度学习 目标检测 违禁物品 x光图像 YOLOv5
下载PDF
A Multi-Mode Public Transportation System Using Vehicular to Network Architecture
7
作者 Settawit Poochaya Peerapong Uthansakul +8 位作者 Monthippa Uthansakul Patikorn Anchuen Kontorn Thammakul Arfat Ahmad Khan Niwat Punanwarakorn Pech Sirivoratum Aranya Kaewkrad Panrawee Kanpan Apichart Wantamee 《Computers, Materials & Continua》 SCIE EI 2022年第12期5845-5862,共18页
The number of accidents in the campus of Suranaree University of Technology(SUT)has increased due to increasing number of personal vehicles.In this paper,we focus on the development of public transportation system usi... The number of accidents in the campus of Suranaree University of Technology(SUT)has increased due to increasing number of personal vehicles.In this paper,we focus on the development of public transportation system using Intelligent Transportation System(ITS)along with the limitation of personal vehicles using sharing economy model.The SUT Smart Transit is utilized as a major public transportation system,while MoreSai@SUT(electric motorcycle services)is a minor public transportation system in this work.They are called Multi-Mode Transportation system as a combination.Moreover,a Vehicle toNetwork(V2N)is used for developing theMulti-Mode Transportation system in the campus.Due to equipping vehicles with On Board Unit(OBU)and 4G LTE modules,the real time speed and locations are transmitted to the cloud.The data is then applied in the proposed mathematical model for the estimation of Estimated Time of Arrival(ETA).In terms of vehicle classifications and counts,we deployed CCTV cameras,and the recorded videos are analyzed by using You Only Look Once(YOLO)algorithm.The simulation and measurement results of SUT Smart Transit and MoreSai@SUT before the covid-19 pandemic are discussed.Contrary to the existing researches,the proposed system is implemented in the real environment.The final results unveil the attractiveness and satisfaction of users.Also,due to the proposed system,the CO_(2) gas gets reduced when Multi-Mode Transportation is implemented practically in the campus. 展开更多
关键词 Smart transit intelligent transportation system(ITS) dedicated short range communication(DSRC) vehicle to network(V2N) vehicle to everything(V2x) electric vehicle(EV) you only look once(YOLO)
下载PDF
改进注意力机制的电梯场景下危险品检测方法 被引量:4
8
作者 郭奕裕 周箩鱼 +1 位作者 刘新瑜 李尧 《计算机应用》 CSCD 北大核心 2023年第7期2295-2302,共8页
针对电动自行车和煤气罐搭乘电梯引起的火灾隐患,提出一种改进注意力机制的电梯场景下危险品检测方法。以YOLOX-s为基线模型,首先在加强特征提取网络中引入深度可分离卷积替换标准卷积,提升模型的推理速度。然后提出一种基于混合域的高... 针对电动自行车和煤气罐搭乘电梯引起的火灾隐患,提出一种改进注意力机制的电梯场景下危险品检测方法。以YOLOX-s为基线模型,首先在加强特征提取网络中引入深度可分离卷积替换标准卷积,提升模型的推理速度。然后提出一种基于混合域的高效卷积块注意力模块(ECBAM)并嵌入主干特征提取网络中。在ECBAM模块的通道注意力部分,使用一维卷积替换两个全连接层,既降低了卷积块注意力模块(CBAM)的复杂度又提高了检测精度。最后提出一种多帧协同算法,通过结合多张图片的危险品检测结果以减少危险品入侵电梯的误报警。实验结果表明:改进后模型比YOLOX-s的平均精度均值(mAP)提升了1.05个百分点,浮点计算量降低了34.1%,模型体积减小了42.8%。可见改进后模型降低了实际应用中的误报警,且满足电梯场景下危险品检测的精度和速度要求。 展开更多
关键词 危险品检测 电梯 yolox-s 深度可分离卷积 高效卷积块注意力模块 一维卷积 多帧协同算法
下载PDF
CRC校验码算法的研究与实现 被引量:22
9
作者 王根义 《电子设计工程》 2012年第9期38-40,共3页
为了提高实际通信中检查信号传输错误的能力,提高和推广CRC校验技术,本论文用逻辑代数知识、按模运算、代数知识和C语言编程工具设计了几种具体实用的CRC校验码的计算方法,这些方法可以应用到实用的数据检错工程中,具有节省CRC校验器的... 为了提高实际通信中检查信号传输错误的能力,提高和推广CRC校验技术,本论文用逻辑代数知识、按模运算、代数知识和C语言编程工具设计了几种具体实用的CRC校验码的计算方法,这些方法可以应用到实用的数据检错工程中,具有节省CRC校验器的软硬件资源的特点。 展开更多
关键词 CRC校验码 按2模加法 查表法 生成多项式g(x)
下载PDF
基于融合多视和全分辨率的矿区沉降监测 被引量:6
10
作者 冷红伟 陶秋香 刘国林 《煤矿安全》 CAS 北大核心 2020年第2期124-127,共4页
针对矿山开采沉降幅度大、范围小的特点,提出融合多视和全分辨率监测矿区沉降的方法。以济宁矿区为研究区,选取2景高分辨率的TerraSAR-X影像,分别采用多视和全分辨率方法获取研究区内2017年2月17日—3月11日的沉降情况;将两者得到的结... 针对矿山开采沉降幅度大、范围小的特点,提出融合多视和全分辨率监测矿区沉降的方法。以济宁矿区为研究区,选取2景高分辨率的TerraSAR-X影像,分别采用多视和全分辨率方法获取研究区内2017年2月17日—3月11日的沉降情况;将两者得到的结果进行融合,即采用多视方法监测下沉盆地边缘较小的沉降,采用全分辨率方法监测下沉盆地中心的大梯度沉降。结果表明:在这期间济宁矿区最大沉降出现在新驿煤矿,最大沉降量达到-74 mm,最大沉降速率达到-3.36 mm/d。 展开更多
关键词 D-INSAR 全分辨率 多视 大梯度沉降 TERRASAR-x 矿区沉降监测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部