This article presents a comprehensive analysis of the current state of research on the English translation of Lu You’s poetry, utilizing a data sample comprising research papers published in the CNKI Full-text Databa...This article presents a comprehensive analysis of the current state of research on the English translation of Lu You’s poetry, utilizing a data sample comprising research papers published in the CNKI Full-text Database from 2001 to 2022. Employing rigorous longitudinal statistical methods, the study examines the progress achieved over the past two decades. Notably, domestic researchers have displayed considerable interest in the study of Lu You’s English translation works since 2001. The research on the English translation of Lu You’s poetry reveals a diverse range of perspectives, indicating a rich body of scholarship. However, several challenges persist, including insufficient research, limited translation coverage, and a noticeable focus on specific poems such as “Phoenix Hairpin” in the realm of English translation research. Consequently, there is ample room for improvement in the quality of research output on the English translation of Lu You’s poems, as well as its recognition within the academic community. Building on these findings, it is argued that future investigations pertaining to the English translation of Lu You’s poetry should transcend the boundaries of textual analysis and encompass broader theoretical perspectives and research methodologies. By undertaking this shift, scholars will develop a more profound comprehension of Lu You’s poetic works and make substantive contributions to the field of translation studies. Thus, this article aims to bridge the gap between past research endeavors and future possibilities, serving as a guide and inspiration for scholars to embark on a more nuanced and enriching exploration of Lu You’s poetry as well as other Chinese literature classics.展开更多
目标检测是计算机视觉领域的研究热点和基础任务,其中基于锚点(Anchor)的目标检测已在众多领域得到广泛应用。当前锚点选取方法主要面临两个问题:基于特定数据集的先验取值尺寸固定、面对不同场景泛化能力弱。计算锚框的无监督K-means算...目标检测是计算机视觉领域的研究热点和基础任务,其中基于锚点(Anchor)的目标检测已在众多领域得到广泛应用。当前锚点选取方法主要面临两个问题:基于特定数据集的先验取值尺寸固定、面对不同场景泛化能力弱。计算锚框的无监督K-means算法,受初始值影响较大,对目标尺寸较单一的数据集聚类产生的锚点差异较小,无法充分体现网络多尺度输出的特点。针对上述问题,本文提出一种基于多尺度的目标检测锚点构造方法(multi-scale-anchor,MSA),将聚类产生的锚点根据数据集本身的特性进行尺度的缩放和拉伸,优化的锚点即保留原数据集的特点也体现了模型多尺度的优势。另外,本方法应用在训练的预处理阶段,不增加模型推理时间。最后,选取单阶段主流算法YOLO(You Only Look Once),在多个不同场景的红外或工业场景数据集上进行丰富的实验。结果表明,多尺度锚点优化方法MSA能显著提高小样本场景的检测精度。展开更多
针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图...针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图像空间维度信息的同时降低模型参数量.改进YOLOv5特征金字塔网络结构,融合浅层网络中的特征图,增加模型对图像低维有效信息的表达能力,进而提升小目标检测精度.同时为了降低航拍图像中复杂背景带来的干扰,引入无参平均注意力模块,同时关注图像的空间注意力与通道注意力;引入VariFocal Loss,降低负样本在训练过程中的权重占比.在VisDrone数据集上的实验验证文中模型的有效性,该模型在有效提升检测精度的同时明显降低复杂度.展开更多
为解决交通道路小目标检测难度大、精度低,容易出现错检漏检的问题,提出一种基于YOLO v5(you only look once v5)算法的多尺度特征融合目标检测改进算法。首先,增加小目标检测头用于适应小目标尺寸,缓解漏检情况。然后,引入可变形卷积网...为解决交通道路小目标检测难度大、精度低,容易出现错检漏检的问题,提出一种基于YOLO v5(you only look once v5)算法的多尺度特征融合目标检测改进算法。首先,增加小目标检测头用于适应小目标尺寸,缓解漏检情况。然后,引入可变形卷积网络v2(deformable convolutional networks V2,DCN V2)提高模型对运动中小目标的学习能力;同时,增加上下文增强模块,提升对远距离小目标的识别能力。最后,在替换损失函数、提高边界框定位精度的同时,使用空间金字塔池化和上下文空间金字塔卷积分组模块,提高网络的感受野和特征表达能力。实验结果表明,所提算法在KITTI数据集小目标类别上平均识别精度达到了95.2%,相较于原始YOLO v5,算法总体平均识别精度提升了2.7%,对小目标的检测效果更佳,平均识别精度提升了3.1%,证明所提算法在道路小目标检测方面的有效性。展开更多
针对Yolov3-Tiny算法在加油站监控场景检测时由于数据特征提取不充分而导致检测精度低、漏检率高等问题,提出一种基于加油站场景的Misp-YOLO(You Only Look Once)目标检测算法。首先引入Mosaic数据增强算法,使图片包含更多特征信息;其...针对Yolov3-Tiny算法在加油站监控场景检测时由于数据特征提取不充分而导致检测精度低、漏检率高等问题,提出一种基于加油站场景的Misp-YOLO(You Only Look Once)目标检测算法。首先引入Mosaic数据增强算法,使图片包含更多特征信息;其次使用InceptionV2和PSConv(Poly-Scale Convolution)多尺度特征提取方法提升网络多尺度预测能力;最后结合scSE(Concurrent Spatial and Channel ‘Squeeze&Excitation’)注意力机制,重构主干网络输出特征。实验结果证明该算法具有较高检测准确度,并且检测速度满足实际需求。优化后的算法性能得到极大提升,可推广应用于其他目标检测中。展开更多
文摘This article presents a comprehensive analysis of the current state of research on the English translation of Lu You’s poetry, utilizing a data sample comprising research papers published in the CNKI Full-text Database from 2001 to 2022. Employing rigorous longitudinal statistical methods, the study examines the progress achieved over the past two decades. Notably, domestic researchers have displayed considerable interest in the study of Lu You’s English translation works since 2001. The research on the English translation of Lu You’s poetry reveals a diverse range of perspectives, indicating a rich body of scholarship. However, several challenges persist, including insufficient research, limited translation coverage, and a noticeable focus on specific poems such as “Phoenix Hairpin” in the realm of English translation research. Consequently, there is ample room for improvement in the quality of research output on the English translation of Lu You’s poems, as well as its recognition within the academic community. Building on these findings, it is argued that future investigations pertaining to the English translation of Lu You’s poetry should transcend the boundaries of textual analysis and encompass broader theoretical perspectives and research methodologies. By undertaking this shift, scholars will develop a more profound comprehension of Lu You’s poetic works and make substantive contributions to the field of translation studies. Thus, this article aims to bridge the gap between past research endeavors and future possibilities, serving as a guide and inspiration for scholars to embark on a more nuanced and enriching exploration of Lu You’s poetry as well as other Chinese literature classics.
文摘目标检测是计算机视觉领域的研究热点和基础任务,其中基于锚点(Anchor)的目标检测已在众多领域得到广泛应用。当前锚点选取方法主要面临两个问题:基于特定数据集的先验取值尺寸固定、面对不同场景泛化能力弱。计算锚框的无监督K-means算法,受初始值影响较大,对目标尺寸较单一的数据集聚类产生的锚点差异较小,无法充分体现网络多尺度输出的特点。针对上述问题,本文提出一种基于多尺度的目标检测锚点构造方法(multi-scale-anchor,MSA),将聚类产生的锚点根据数据集本身的特性进行尺度的缩放和拉伸,优化的锚点即保留原数据集的特点也体现了模型多尺度的优势。另外,本方法应用在训练的预处理阶段,不增加模型推理时间。最后,选取单阶段主流算法YOLO(You Only Look Once),在多个不同场景的红外或工业场景数据集上进行丰富的实验。结果表明,多尺度锚点优化方法MSA能显著提高小样本场景的检测精度。
文摘针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图像空间维度信息的同时降低模型参数量.改进YOLOv5特征金字塔网络结构,融合浅层网络中的特征图,增加模型对图像低维有效信息的表达能力,进而提升小目标检测精度.同时为了降低航拍图像中复杂背景带来的干扰,引入无参平均注意力模块,同时关注图像的空间注意力与通道注意力;引入VariFocal Loss,降低负样本在训练过程中的权重占比.在VisDrone数据集上的实验验证文中模型的有效性,该模型在有效提升检测精度的同时明显降低复杂度.
文摘针对Yolov3-Tiny算法在加油站监控场景检测时由于数据特征提取不充分而导致检测精度低、漏检率高等问题,提出一种基于加油站场景的Misp-YOLO(You Only Look Once)目标检测算法。首先引入Mosaic数据增强算法,使图片包含更多特征信息;其次使用InceptionV2和PSConv(Poly-Scale Convolution)多尺度特征提取方法提升网络多尺度预测能力;最后结合scSE(Concurrent Spatial and Channel ‘Squeeze&Excitation’)注意力机制,重构主干网络输出特征。实验结果证明该算法具有较高检测准确度,并且检测速度满足实际需求。优化后的算法性能得到极大提升,可推广应用于其他目标检测中。