The presence of high-density defects is rarely observed in bulk 3 mol%yttria-stabilized tetragonal zirconia polycrystal(3Y-TZP)ceramics obtained through conventional pressureless sintering.In the present work,fine-gra...The presence of high-density defects is rarely observed in bulk 3 mol%yttria-stabilized tetragonal zirconia polycrystal(3Y-TZP)ceramics obtained through conventional pressureless sintering.In the present work,fine-grained dense 147 nm 3Y-TZP ceramics were prepared by pressureless sintering of commercial 0.25 wt%alumina-doped zirconia powders at 1300℃.A novel discovery was reported in which large amounts of defects were present in the grain interiors of the sample.The phenomenon was further examined using three types of powder samples,and the reasons for defect formation were investigated by microstructural characterization using high-resolution transmission electron microscopy(HRTEM)analysis and Rietveld refinement.The results confirmed the essential dependence of the defect formation on the alumina addition.The authors attributed the defect formation to the significant difference in ionic radii of the solvent and solute during the dissolution of alumina into the zirconia lattice.The sintering kinetics were proposed to be enhanced by the presence of substantial defects,which consequently favored the low-temperature sintering of the alumina-doped zirconia ceramics.展开更多
The sintering behavior and mechanical properties of zirconia doped with 2.0mol%-3.0mol%Y_(2)O_(3)were studied by pressure-less sintering.The experimental results show that the densification temperature of zirconia cer...The sintering behavior and mechanical properties of zirconia doped with 2.0mol%-3.0mol%Y_(2)O_(3)were studied by pressure-less sintering.The experimental results show that the densification temperature of zirconia ceramics increases gradually with the decrease of Y_(2)O_(3)doping content by which decreases the sintering driving force due to the lower oxygen vacancy concentration of the systems.Furthermore,the bending strength and fracture toughness of the prepared zirconia ceramics increase with the decrease of Y_(2)O_(3)doping content.It can be attributed to the fact that the phase stability of tetragonal zirconia decreases with the decrease of Y_(2)O_(3)doping content,which is easier to induce"phase transformation toughening"and dissipate impact energy.The relative density,bending strength and fracture toughness of 2.0 mol%Y_(2)O_(3)doped zirconia ceramics(2.0Y-ZrO_(2))sintered at 1525℃are 99.00%,1256.65±20.82 MPa and 9.85±0.13 MPa·m^(1/2),respectively.展开更多
Background The low-temperature resistance aging performance of Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is the key effective factor that influences the long-term success rate of prosthesis. The obje...Background The low-temperature resistance aging performance of Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is the key effective factor that influences the long-term success rate of prosthesis. The objective of this study was to test and compare the aging performances for resisting low temperature of Lava Frame, Cercon Smart, and Upcera Yttria-stabilized zirconia core materials, via analyzing the micro and the crystal phases of the materials, and measure the three-point bending strength and the fracture toughness. Methods The three zirconia green bodies were prepared as 60 test samples for three-point bending strength and as 60 test samples for fracture toughness. The test samples for three-point bending strength and fracture toughness were assigned to five groups and were treated respectively for 0, 5, 10, 15, and 20 hours to observe the micro and the crystal phases of the test samples. Then the three-point bending strength and fracture toughness were tested by X-ray diffraction (XRD). Results The m phase content of Lava Frame was raised from 7.70% to 13.01%; the m phase content of Cercon Smart was raised from 4.95% to 8.53%; and Lava Frame is raised from 10.84% to 35.18%. The three-point bending strengths of the three zirconia core materials were higher than 1100 MPa and the fracture toughness was higher than 3 MPa.m^1/2. The three-point bending strength and the fracture toughness of Upcra zirconia decreased the most, followed by Lava Frame, and then by Cercon Smart. Conclusion The aging resistance sequences of the three zirconia core materials are, from strong to weak, Cercon Smart, Lava Frame, and Upcera.展开更多
基金the National Key R&D Program of China(No.2021YFB3701400)the National Natural Science Foundation of China(Nos.92163208 and 52322207)the Foundation of Hubei Province Key Laboratory of Green Materials for Light Industry,Hubei University of Technology.
文摘The presence of high-density defects is rarely observed in bulk 3 mol%yttria-stabilized tetragonal zirconia polycrystal(3Y-TZP)ceramics obtained through conventional pressureless sintering.In the present work,fine-grained dense 147 nm 3Y-TZP ceramics were prepared by pressureless sintering of commercial 0.25 wt%alumina-doped zirconia powders at 1300℃.A novel discovery was reported in which large amounts of defects were present in the grain interiors of the sample.The phenomenon was further examined using three types of powder samples,and the reasons for defect formation were investigated by microstructural characterization using high-resolution transmission electron microscopy(HRTEM)analysis and Rietveld refinement.The results confirmed the essential dependence of the defect formation on the alumina addition.The authors attributed the defect formation to the significant difference in ionic radii of the solvent and solute during the dissolution of alumina into the zirconia lattice.The sintering kinetics were proposed to be enhanced by the presence of substantial defects,which consequently favored the low-temperature sintering of the alumina-doped zirconia ceramics.
基金Funded by the National Key Research and Development Plan of China(No.2021YFB3701401)the National Natural Science Foundation of China(Nos.92163208,51902233,51972243,51521001,and 51832003)。
文摘The sintering behavior and mechanical properties of zirconia doped with 2.0mol%-3.0mol%Y_(2)O_(3)were studied by pressure-less sintering.The experimental results show that the densification temperature of zirconia ceramics increases gradually with the decrease of Y_(2)O_(3)doping content by which decreases the sintering driving force due to the lower oxygen vacancy concentration of the systems.Furthermore,the bending strength and fracture toughness of the prepared zirconia ceramics increase with the decrease of Y_(2)O_(3)doping content.It can be attributed to the fact that the phase stability of tetragonal zirconia decreases with the decrease of Y_(2)O_(3)doping content,which is easier to induce"phase transformation toughening"and dissipate impact energy.The relative density,bending strength and fracture toughness of 2.0 mol%Y_(2)O_(3)doped zirconia ceramics(2.0Y-ZrO_(2))sintered at 1525℃are 99.00%,1256.65±20.82 MPa and 9.85±0.13 MPa·m^(1/2),respectively.
文摘Background The low-temperature resistance aging performance of Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is the key effective factor that influences the long-term success rate of prosthesis. The objective of this study was to test and compare the aging performances for resisting low temperature of Lava Frame, Cercon Smart, and Upcera Yttria-stabilized zirconia core materials, via analyzing the micro and the crystal phases of the materials, and measure the three-point bending strength and the fracture toughness. Methods The three zirconia green bodies were prepared as 60 test samples for three-point bending strength and as 60 test samples for fracture toughness. The test samples for three-point bending strength and fracture toughness were assigned to five groups and were treated respectively for 0, 5, 10, 15, and 20 hours to observe the micro and the crystal phases of the test samples. Then the three-point bending strength and fracture toughness were tested by X-ray diffraction (XRD). Results The m phase content of Lava Frame was raised from 7.70% to 13.01%; the m phase content of Cercon Smart was raised from 4.95% to 8.53%; and Lava Frame is raised from 10.84% to 35.18%. The three-point bending strengths of the three zirconia core materials were higher than 1100 MPa and the fracture toughness was higher than 3 MPa.m^1/2. The three-point bending strength and the fracture toughness of Upcra zirconia decreased the most, followed by Lava Frame, and then by Cercon Smart. Conclusion The aging resistance sequences of the three zirconia core materials are, from strong to weak, Cercon Smart, Lava Frame, and Upcera.