Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited r...Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited research on the deformation and damage process of zirconia ceramics. This article analyzes the acoustic emission characteristics of each stage of ceramic damage from the perspective of acoustic emission, and explores its deformation process characteristics from multiple perspectives such as time domain, frequency, and EWT modal analysis. It is concluded that zirconia ceramics exhibit higher brittleness and acoustic emission strength than alumina ceramics, and when approaching the fracture, it tends to generate lower frequency acoustic emission signals.展开更多
Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconi...Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 μm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37℃ for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, B1, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP- containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL.展开更多
Despite its unique high efficiency and good environmental compatibility, the water-soluble binder system still encounters problems achieving a desired sintered part via ceramic injection molding because of the poor co...Despite its unique high efficiency and good environmental compatibility, the water-soluble binder system still encounters problems achieving a desired sintered part via ceramic injection molding because of the poor compatibility and the powder-binder segregation between ceramic powders and binders. The objective of this study was to obtain a sintered part with excellent properties by introducing a small quantity of oleic acid to the surface of zirconia powders before the mixing process. As opposed to many previous investigations that focused only on the rheological behavior and modification mechanism, the sintering behavior and densification process were systematically investigated in this study. With the modified powders, debound parts with a more homogeneous and smaller pore size distribution were fabricated. Also, a higher density and greater flexural strength were achieved in the sintered parts fabricated using the modified powders.展开更多
To overcome the photochemical activity of rutile used as a pigment and improve its durability in application, hydrous zirconia-coated TiO2 was prepared by the precipitation method. High-resolution transmission electro...To overcome the photochemical activity of rutile used as a pigment and improve its durability in application, hydrous zirconia-coated TiO2 was prepared by the precipitation method. High-resolution transmission electron microscope (HRTEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and surface structure of hydrous zirconia-coated TiO2. The ζ-potential and ultraviolet (UV) absorption of both coated and uncoated rutile were examined. The results show that hydrous zirconia can not only improve the durability but also raise the lightness. A suitable ZrO2 content of hydrous zirconia-coated TiO2 is about 1.0wt%, and a dense film on the surface of rutile can be formed with better pigmentary properties. Based on the thermodynamic analysis, the zirconia-coating process and the film growth mechanism were discussed.展开更多
The influences of adding sodium to zirconia on the acid-base properties of the surface and on the catalytic conversion of ethanol and acetone were investigated. The rates of ethanol dehydration, dehydrogenation and co...The influences of adding sodium to zirconia on the acid-base properties of the surface and on the catalytic conversion of ethanol and acetone were investigated. The rates of ethanol dehydration, dehydrogenation and coupling were evaluated in a fixed-bed flow reactor operating at temperatures from 613 to 673 K. The rate of acetone condensation was evaluated in the same reactor operating at 473-573 K. Addition of 1.0 wt% Na to ZrO2 decreased the rate of ethanol dehydration by more than an order of magnitude, which was consistent with a neutralization of acid sites evaluated by ammonia adsorption microcalorimetry. Addition of 1.0 wt% Na to ZrO2 also increased the base site density quantified by carbon dioxide adsorption microcalorimetry and the rate of acetone condensation. Although the rate of ethanol coupling was not increased by the addition of Na, the overall selectivity of ethanol to butanol was improved over the 1.0 wt% Na/ZrO2 sample because of the significant inhibition of ethanol dehydration.展开更多
Mesoporous tetragonal sulfated zirconia with high surface area and narrow pore-size distribution was prepared using Zr(O-nPr)4 as zirconium precursor, sulfuric acid as sulfur source and triblock copolymer poly(ethy...Mesoporous tetragonal sulfated zirconia with high surface area and narrow pore-size distribution was prepared using Zr(O-nPr)4 as zirconium precursor, sulfuric acid as sulfur source and triblock copolymer poly(ethylene glycol)-poly(propylene glycol)- poly(ethylene glycol) (P123) as the template. The samples were characterized by X-ray diffraction, N2 sorption, TEM, and NH3- TPD. A phase transformation from monoclinic sulfated zirconia to tetragonal sulfated zirconia is observed. The product shows strong acidity.C2009 Bin Yue. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
A novel method to prepare mesoporous nano-zirconia was developed. Thesynthesis was carried out in the presence of PEO surfactants via a solid-state reaction. Thematerials exhibit a strong diffraction peak at low 2θ a...A novel method to prepare mesoporous nano-zirconia was developed. Thesynthesis was carried out in the presence of PEO surfactants via a solid-state reaction. Thematerials exhibit a strong diffraction peak at low 2θ angle and their nitrogenadsorption/desorption isotherms are typical of type IV with H1 hysteresis loops. The pore structureimaged by TEM can be described as wormhole domains. The tetragonal zirconia nanocrystals are uniformin size (around 1.5 nm) and their mesopores focus on around 4.6 nm. The zirconia nanocrystal growthis tentatively postulated to be the result of an aggregation mechanism. This study also revealsthat the PEO surfactants can interact with the Zr-O-Zr framework to reinforce the thermal stabilityof zirconia. The ratio of NaOH to ZrOCl_2, crystallization and calcination temperature play animportant role in the synthesis of mesoporous nano-zirconia.展开更多
Zirconia-mullite-corundum composites were successfully prepared from fly ash,zircon and alumina powder by a reaction sintering process.The phase and microstructure evolutions of the composite synthesized at desired te...Zirconia-mullite-corundum composites were successfully prepared from fly ash,zircon and alumina powder by a reaction sintering process.The phase and microstructure evolutions of the composite synthesized at desired temperatures of 1 400,1 500 and 1 600°C for 4 h were characterized by X-ray diffractometry and scanning electronic microscopy,respectively.The influences of sintering temperature on shrinkage ratio,apparent porosity and bulk density of the synthesized composite were investigated.The formation process of the composites was discussed in detail.The results show that the zirconia-mullite-corundum composites with good sintering properties can be prepared at 1 600°C for 4 h.Zirconia particles can be homogeneously distributed in mullite matrix,and the zirconia particles are around 5μm.The formation process of zirconia-mullite-corundum composites consists of decomposition of zircon and mullitization process.展开更多
C1 chemistry based on synthesis gas, methane, and carbon dioxide offers many routes to industrial chemicals. The reactions related to the synthesis of gas can be classified into direct and indirect approach for making...C1 chemistry based on synthesis gas, methane, and carbon dioxide offers many routes to industrial chemicals. The reactions related to the synthesis of gas can be classified into direct and indirect approach for making such products, such as acetic acid, dimethyl ether, and alcohol. Catalytic syngas processing is currently done at high temperatures and pressures, conditions that could be unfavorable for the life of the catalyst. Another issue of C1 chemistry is related to the methane-initiated process. It has been known that direct methane conversions are still suffering from low yields and selectivity of products resulting in unprofitable ways to produce products, such as higher hydrocarbons, methanol, and so on. However, many experts and researchers are still trying to find the best method to overcome these barriers, for example, by finding the best catalyst to reduce the high-energy barrier of the reactions and conduct only selective catalyst-surface reactions. The appli- cation of Yttria-Stabilized Zirconia (YSZ) and its combination with other metals for catalyzing purposes are increasing. The existence of an interesting site that acts as oxygen store could be the main reason for it. Moreover, formation of intermediate species on the surface of YSZ also contributes significantly in increasing the production of some specific products. Understanding the phenomena happening inside could be necessary. In this article, the use of YSZ for some C1 chemistry reactions was discussed and reviewed.展开更多
An efficient ZrO2-doped Cu/SiO2 catalyst was fabricated through hydrolysis precipitation method(HP)and used to produce ethylene glycol(EG)through dimethyl oxalate(DMO)hydrogenation.The states for zirconia on copper ca...An efficient ZrO2-doped Cu/SiO2 catalyst was fabricated through hydrolysis precipitation method(HP)and used to produce ethylene glycol(EG)through dimethyl oxalate(DMO)hydrogenation.The states for zirconia on copper catalyst and roles in DMO hydrogenation were investigated through various characterization tools,including N2 physical adsorption,XRD,H2-TPR,Methyl glycolate-TPD-MS,XPS,XAES as well.Compared with common ammonia evaporation and co-precipitation methods used in catalyst preparation,this HP method is found to effectively suppress the agglomeration and further size growth of copper nanoparticles by enhancing the interactions between copper and zirconia species.More importantly,uniform distribution of ZrO2 dopant is achieved due to the pseudo-homogeneous reactions in the mixing step of catalyst preparation.A proper amount of zirconium dopant helps achieve the desirable proportion of Cu+/(Cu++CuO)for surface copper species,especially promotes the production of Cu+species originated from Cu-ZrO2 species at the interface of copper and zirconia particles.In comparison with Cu+species formed from copper phyllosilicates reduction,the Cu+sites derived from Cu-ZrO2 species show higher adsorption ability of MG,an important intermediate species in ethylene glycol production.These adsorbed MG molecules further react with atomic hydrogen shifted from adjacent metallic copper surface,leading to a higher catalytic behavior.For the EG production via DMO hydrogenation,the turnover frequency(TOF)normalized by CuO species on CuZr/SiO2 catalyst is 1.8 times than that of traditional Cu/SiO2 counterpart.Due to the enhanced synergy effect between Cu+and Cuo active sites,a lower activation energy of ester hydrogenation on this ZrO2-doped Cu/SiO2 catalyst is believed to be responsible for the significant improvement.展开更多
We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth ...We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth conditions were optimized and the structure of the as-grown crystals was characterized by X-ray diffraction.The transmittance of 15 mol.% yttria-stabilized cubic zirconia crystal was nearly 80% in the range of 400–1600 nm.The refractive indices were measured and fitted the Sellmeier equation whi...展开更多
Study on nanomaterials has attracted great interests in recent years. In this article, zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfac...Study on nanomaterials has attracted great interests in recent years. In this article, zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocrystal size is around 15 nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.展开更多
A zirconia-pillared layered lanthanum niobate was prepared by first preswelling layered HLaNb2O7 with n-hexadecylamine(n-C16H33NH2), then further reacting with zirconyl chloride aqueous solution, and finally calcining...A zirconia-pillared layered lanthanum niobate was prepared by first preswelling layered HLaNb2O7 with n-hexadecylamine(n-C16H33NH2), then further reacting with zirconyl chloride aqueous solution, and finally calcining the resultant solid product in air. The obtained new material has an interlayer spacing of 1.36nm, and a high thermal stability above 700 degrees C.展开更多
This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Z...This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm x 7 mm x 7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2), Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n= 16) acted as the control group. Core-veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm-min-1). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7__.8) MPa than all other tested groups ((27.1__.4.1)-(39.7__.4.7) and (27.4__.5.6)-(35.9___4.7) MPa with and without colouring, respectively) (P^0.001). While in zirconia-veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering ~ 1/3 of the substrate surface, in the metal-ceramic group, veneering ceramic was left adhered 1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core-veneer adhesion. Metal-ceramic adhesion was more reliable than all zirconia-veneer ceramics tested.展开更多
A mesoporous sulfated zirconia-silica catalyst bearing only Br?nsted acid sites converted glycerol to acrolein in 81%yield with 82% selectivity.Space time yield as high as 9.0 mmol h^(-1) g_(cat)^(-1) was achie...A mesoporous sulfated zirconia-silica catalyst bearing only Br?nsted acid sites converted glycerol to acrolein in 81%yield with 82% selectivity.Space time yield as high as 9.0 mmol h^(-1) g_(cat)^(-1) was achieved even at a low reaction temperature of 523 K.The catalytic activity and selectivity were higher than those of typical sulfated zirconia.It is proposed that the milder acidity due to dilution of zirconium species by silica and large pore size for faster diffusion contributed towards the better catalytic performance.展开更多
As for ceramic stereolithography technique,the preparation of suitable resin-based ceramic slurry is of primary importance.In this study,the effects of powder characteristics such as specific surface area,particle siz...As for ceramic stereolithography technique,the preparation of suitable resin-based ceramic slurry is of primary importance.In this study,the effects of powder characteristics such as specific surface area,particle size and distribution,particle morphology on the rheological behavior of zirconia resin-based suspensions were investigated intensively.Results show that the specific surface area of the powder is the most important factor affecting slurry viscosity.Choosing low specific surface area and quasi-spherical shaped powder is more likely to obtain low viscosity slurries.In addition,the influence of solid loading on the flow behavior were also studied using Krieger-Dougherty model.Zirconia samples with the relative density of(97.83±0.33)%were obtained after sintering at 1550℃.No obvious abnormal grain growth in the microstructure of the sintered body is observed.Results indicate that after the optimization of the processing parameters with the help of rheology characterization,complex-shaped high-quality zirconia parts can be obtained using the stereolithography technique.展开更多
A series of gold-based catalysts were prepared by deposition precipitation or incipient wetness impregnation on CexZ1-xO2 solid solutions (0.28≤x≤1.00). The morphological and structural characterization of these c...A series of gold-based catalysts were prepared by deposition precipitation or incipient wetness impregnation on CexZ1-xO2 solid solutions (0.28≤x≤1.00). The morphological and structural characterization of these catalysts were carried out with X-ray diffraction, trans- mission electron microscopy (TEM) analysis and physical adsorption technique, and their redox properties were studied by temperature programmed reduction using both H2 and CO as probe molecules. Two cycles of oxidation/reduction were carried out in order to evaluate the effects of redox aging and gold sintering on the oxygen exchange capability. As observed with other noble metals, gold enhanced and promoted the ceria reduction at lower temperatures. Reduction by CO was shown to be dependent on the fine dispersion of gold and to be nega- tively affected by the ageing process more than reduction with hydrogen. This might have implications in reactions like water gas shift and CO-PROX which involve CO as a main reactant.展开更多
文摘Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited research on the deformation and damage process of zirconia ceramics. This article analyzes the acoustic emission characteristics of each stage of ceramic damage from the perspective of acoustic emission, and explores its deformation process characteristics from multiple perspectives such as time domain, frequency, and EWT modal analysis. It is concluded that zirconia ceramics exhibit higher brittleness and acoustic emission strength than alumina ceramics, and when approaching the fracture, it tends to generate lower frequency acoustic emission signals.
文摘Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 μm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37℃ for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, B1, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP- containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL.
基金financially supported by the National Natural Science Foundation of China (Nos. 51572035 and 51502041)
文摘Despite its unique high efficiency and good environmental compatibility, the water-soluble binder system still encounters problems achieving a desired sintered part via ceramic injection molding because of the poor compatibility and the powder-binder segregation between ceramic powders and binders. The objective of this study was to obtain a sintered part with excellent properties by introducing a small quantity of oleic acid to the surface of zirconia powders before the mixing process. As opposed to many previous investigations that focused only on the rheological behavior and modification mechanism, the sintering behavior and densification process were systematically investigated in this study. With the modified powders, debound parts with a more homogeneous and smaller pore size distribution were fabricated. Also, a higher density and greater flexural strength were achieved in the sintered parts fabricated using the modified powders.
基金supported by the National Key Technologies R&D Program of China (No.2006BAC02A05)the Major State Ba-sic Research and Development Program of China (No.2007CB613501)the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KGCX2-YW-214)
文摘To overcome the photochemical activity of rutile used as a pigment and improve its durability in application, hydrous zirconia-coated TiO2 was prepared by the precipitation method. High-resolution transmission electron microscope (HRTEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and surface structure of hydrous zirconia-coated TiO2. The ζ-potential and ultraviolet (UV) absorption of both coated and uncoated rutile were examined. The results show that hydrous zirconia can not only improve the durability but also raise the lightness. A suitable ZrO2 content of hydrous zirconia-coated TiO2 is about 1.0wt%, and a dense film on the surface of rutile can be formed with better pigmentary properties. Based on the thermodynamic analysis, the zirconia-coating process and the film growth mechanism were discussed.
基金the Chemical Sciences,Geosciences and Biosciences Division,Office of Basic Energy Sciences,Office of Science,U.S.Department of Energy,grant no.DEFG0295ER14549
文摘The influences of adding sodium to zirconia on the acid-base properties of the surface and on the catalytic conversion of ethanol and acetone were investigated. The rates of ethanol dehydration, dehydrogenation and coupling were evaluated in a fixed-bed flow reactor operating at temperatures from 613 to 673 K. The rate of acetone condensation was evaluated in the same reactor operating at 473-573 K. Addition of 1.0 wt% Na to ZrO2 decreased the rate of ethanol dehydration by more than an order of magnitude, which was consistent with a neutralization of acid sites evaluated by ammonia adsorption microcalorimetry. Addition of 1.0 wt% Na to ZrO2 also increased the base site density quantified by carbon dioxide adsorption microcalorimetry and the rate of acetone condensation. Although the rate of ethanol coupling was not increased by the addition of Na, the overall selectivity of ethanol to butanol was improved over the 1.0 wt% Na/ZrO2 sample because of the significant inhibition of ethanol dehydration.
基金supported by the National Basic Research Program of China(No.2009CB623506)the National Science Foundation of China(Nos.20633030,20721063 and 20873027),STCSM(Nos.08DZ2270500 and075211013)Shanghai Leading Academic Discipline Project(No.B108).
文摘Mesoporous tetragonal sulfated zirconia with high surface area and narrow pore-size distribution was prepared using Zr(O-nPr)4 as zirconium precursor, sulfuric acid as sulfur source and triblock copolymer poly(ethylene glycol)-poly(propylene glycol)- poly(ethylene glycol) (P123) as the template. The samples were characterized by X-ray diffraction, N2 sorption, TEM, and NH3- TPD. A phase transformation from monoclinic sulfated zirconia to tetragonal sulfated zirconia is observed. The product shows strong acidity.C2009 Bin Yue. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘A novel method to prepare mesoporous nano-zirconia was developed. Thesynthesis was carried out in the presence of PEO surfactants via a solid-state reaction. Thematerials exhibit a strong diffraction peak at low 2θ angle and their nitrogenadsorption/desorption isotherms are typical of type IV with H1 hysteresis loops. The pore structureimaged by TEM can be described as wormhole domains. The tetragonal zirconia nanocrystals are uniformin size (around 1.5 nm) and their mesopores focus on around 4.6 nm. The zirconia nanocrystal growthis tentatively postulated to be the result of an aggregation mechanism. This study also revealsthat the PEO surfactants can interact with the Zr-O-Zr framework to reinforce the thermal stabilityof zirconia. The ratio of NaOH to ZrOCl_2, crystallization and calcination temperature play animportant role in the synthesis of mesoporous nano-zirconia.
基金Project(N100302002)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20100471467)supported by the China Postdoctoral Science Foundation
文摘Zirconia-mullite-corundum composites were successfully prepared from fly ash,zircon and alumina powder by a reaction sintering process.The phase and microstructure evolutions of the composite synthesized at desired temperatures of 1 400,1 500 and 1 600°C for 4 h were characterized by X-ray diffractometry and scanning electronic microscopy,respectively.The influences of sintering temperature on shrinkage ratio,apparent porosity and bulk density of the synthesized composite were investigated.The formation process of the composites was discussed in detail.The results show that the zirconia-mullite-corundum composites with good sintering properties can be prepared at 1 600°C for 4 h.Zirconia particles can be homogeneously distributed in mullite matrix,and the zirconia particles are around 5μm.The formation process of zirconia-mullite-corundum composites consists of decomposition of zircon and mullitization process.
基金Project supported by the Global R&D Program of the Korea Foundation for International Cooperation of Science and Technology (KICOS)
文摘C1 chemistry based on synthesis gas, methane, and carbon dioxide offers many routes to industrial chemicals. The reactions related to the synthesis of gas can be classified into direct and indirect approach for making such products, such as acetic acid, dimethyl ether, and alcohol. Catalytic syngas processing is currently done at high temperatures and pressures, conditions that could be unfavorable for the life of the catalyst. Another issue of C1 chemistry is related to the methane-initiated process. It has been known that direct methane conversions are still suffering from low yields and selectivity of products resulting in unprofitable ways to produce products, such as higher hydrocarbons, methanol, and so on. However, many experts and researchers are still trying to find the best method to overcome these barriers, for example, by finding the best catalyst to reduce the high-energy barrier of the reactions and conduct only selective catalyst-surface reactions. The appli- cation of Yttria-Stabilized Zirconia (YSZ) and its combination with other metals for catalyzing purposes are increasing. The existence of an interesting site that acts as oxygen store could be the main reason for it. Moreover, formation of intermediate species on the surface of YSZ also contributes significantly in increasing the production of some specific products. Understanding the phenomena happening inside could be necessary. In this article, the use of YSZ for some C1 chemistry reactions was discussed and reviewed.
基金financial support from the National Natural Science Foundation of China(21878227,U1510203)。
文摘An efficient ZrO2-doped Cu/SiO2 catalyst was fabricated through hydrolysis precipitation method(HP)and used to produce ethylene glycol(EG)through dimethyl oxalate(DMO)hydrogenation.The states for zirconia on copper catalyst and roles in DMO hydrogenation were investigated through various characterization tools,including N2 physical adsorption,XRD,H2-TPR,Methyl glycolate-TPD-MS,XPS,XAES as well.Compared with common ammonia evaporation and co-precipitation methods used in catalyst preparation,this HP method is found to effectively suppress the agglomeration and further size growth of copper nanoparticles by enhancing the interactions between copper and zirconia species.More importantly,uniform distribution of ZrO2 dopant is achieved due to the pseudo-homogeneous reactions in the mixing step of catalyst preparation.A proper amount of zirconium dopant helps achieve the desirable proportion of Cu+/(Cu++CuO)for surface copper species,especially promotes the production of Cu+species originated from Cu-ZrO2 species at the interface of copper and zirconia particles.In comparison with Cu+species formed from copper phyllosilicates reduction,the Cu+sites derived from Cu-ZrO2 species show higher adsorption ability of MG,an important intermediate species in ethylene glycol production.These adsorbed MG molecules further react with atomic hydrogen shifted from adjacent metallic copper surface,leading to a higher catalytic behavior.For the EG production via DMO hydrogenation,the turnover frequency(TOF)normalized by CuO species on CuZr/SiO2 catalyst is 1.8 times than that of traditional Cu/SiO2 counterpart.Due to the enhanced synergy effect between Cu+and Cuo active sites,a lower activation energy of ester hydrogenation on this ZrO2-doped Cu/SiO2 catalyst is believed to be responsible for the significant improvement.
基金supported by the National Natural Science Foundation of China (50672111)Shanghai Science and Technology Committee (08520513100)
文摘We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth conditions were optimized and the structure of the as-grown crystals was characterized by X-ray diffraction.The transmittance of 15 mol.% yttria-stabilized cubic zirconia crystal was nearly 80% in the range of 400–1600 nm.The refractive indices were measured and fitted the Sellmeier equation whi...
基金Funded by High and New-Technology Project from Science and Technology Department of Fujian Province (No. 2004H008)
文摘Study on nanomaterials has attracted great interests in recent years. In this article, zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocrystal size is around 15 nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.
文摘A zirconia-pillared layered lanthanum niobate was prepared by first preswelling layered HLaNb2O7 with n-hexadecylamine(n-C16H33NH2), then further reacting with zirconyl chloride aqueous solution, and finally calcining the resultant solid product in air. The obtained new material has an interlayer spacing of 1.36nm, and a high thermal stability above 700 degrees C.
文摘This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm x 7 mm x 7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2), Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n= 16) acted as the control group. Core-veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm-min-1). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7__.8) MPa than all other tested groups ((27.1__.4.1)-(39.7__.4.7) and (27.4__.5.6)-(35.9___4.7) MPa with and without colouring, respectively) (P^0.001). While in zirconia-veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering ~ 1/3 of the substrate surface, in the metal-ceramic group, veneering ceramic was left adhered 1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core-veneer adhesion. Metal-ceramic adhesion was more reliable than all zirconia-veneer ceramics tested.
基金supported by Grant-in-Aid for Research Activity Start-up(KAKENHI,21860004)for Young Scientists(KAKENHI,26709060) from Japan Society for the Promotion of Science(JSPS)
文摘A mesoporous sulfated zirconia-silica catalyst bearing only Br?nsted acid sites converted glycerol to acrolein in 81%yield with 82% selectivity.Space time yield as high as 9.0 mmol h^(-1) g_(cat)^(-1) was achieved even at a low reaction temperature of 523 K.The catalytic activity and selectivity were higher than those of typical sulfated zirconia.It is proposed that the milder acidity due to dilution of zirconium species by silica and large pore size for faster diffusion contributed towards the better catalytic performance.
基金National Key Research and Development Program of China(2017YFB0310400)National Natural Science Foundation of China(51572277,51702340)+1 种基金Shanghai Sailing Program(17YF1428800)Natural Science Foundation of Shanghai(17ZR1434800)。
文摘As for ceramic stereolithography technique,the preparation of suitable resin-based ceramic slurry is of primary importance.In this study,the effects of powder characteristics such as specific surface area,particle size and distribution,particle morphology on the rheological behavior of zirconia resin-based suspensions were investigated intensively.Results show that the specific surface area of the powder is the most important factor affecting slurry viscosity.Choosing low specific surface area and quasi-spherical shaped powder is more likely to obtain low viscosity slurries.In addition,the influence of solid loading on the flow behavior were also studied using Krieger-Dougherty model.Zirconia samples with the relative density of(97.83±0.33)%were obtained after sintering at 1550℃.No obvious abnormal grain growth in the microstructure of the sintered body is observed.Results indicate that after the optimization of the processing parameters with the help of rheology characterization,complex-shaped high-quality zirconia parts can be obtained using the stereolithography technique.
文摘A series of gold-based catalysts were prepared by deposition precipitation or incipient wetness impregnation on CexZ1-xO2 solid solutions (0.28≤x≤1.00). The morphological and structural characterization of these catalysts were carried out with X-ray diffraction, trans- mission electron microscopy (TEM) analysis and physical adsorption technique, and their redox properties were studied by temperature programmed reduction using both H2 and CO as probe molecules. Two cycles of oxidation/reduction were carried out in order to evaluate the effects of redox aging and gold sintering on the oxygen exchange capability. As observed with other noble metals, gold enhanced and promoted the ceria reduction at lower temperatures. Reduction by CO was shown to be dependent on the fine dispersion of gold and to be nega- tively affected by the ageing process more than reduction with hydrogen. This might have implications in reactions like water gas shift and CO-PROX which involve CO as a main reactant.