We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o...We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.展开更多
Accurately predicting the production rate and estimated ultimate recovery(EUR)of shale oil wells is vital for efficient shale oil development.Although numerical simulations provide accurate predictions,their high time...Accurately predicting the production rate and estimated ultimate recovery(EUR)of shale oil wells is vital for efficient shale oil development.Although numerical simulations provide accurate predictions,their high time,data,and labor demands call for a swifter,yet precise,method.This study introduces the DuongeCNNeLSTM(D-C-L)model,which integrates a convolutional neural network(CNN)with a long short-term memory(LSTM)network and is grounded on the empirical Duong model for physical constraints.Compared to traditional approaches,the D-C-L model demonstrates superior precision,efficiency,and cost-effectiveness in predicting shale oil production.展开更多
Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition...Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition of demulsifiers for oil-water separation.This inevitably increases the exploitation cost and environmental pollution risk.Switchable surfactants have garnered much attention due to their dual capabilities of underground heavy oil emulsification and surface demulsification.This study focuses on the fundamental working principles and classification of novel switchable surfactants for oil displacement developed in recent years.It offers a comprehensive overview of the latest advances in the applications of switchable surfactants in the fields of enhanced oil recovery(EOR),oil sand washing,and oil-water separation.Furthermore,it highlights the existing challenges and future development directions of switchable surfactants for heavy oil recovery.展开更多
In order to promote agricultural production and trade cooperation among BRICS countries,and ensure the security and stability of the oils and oilseeds industrial and supply chains in China and the world,the production...In order to promote agricultural production and trade cooperation among BRICS countries,and ensure the security and stability of the oils and oilseeds industrial and supply chains in China and the world,the production,consumption,trade trend,and cooperation potential of oils and oilseeds in BRICS countries were expounded,and relevant policy recommendations were put forward.Most of the BRICS countries are major agricultural producers,and they are also important agricultural product consumption markets in the world.In 2023/2024,the production and consumption of oilseeds in BRICS countries account for nearly half of the world's total;the production of vegetable oils exceeds a quarter of the world's total,and the consumption of vegetable oils accounts for 40%of the world's total.In 2023/2024,the import and export volume of oilseeds exceeds half of the world's total;vegetable oil imports account for 40%of the world's total,and exports account for about one tenth of the world's total.China's imports of oilseeds and oils from BRICS countries account for 68%and 29%of its global imports in 2023,respectively.BRICS countries are rich in agricultural land resources,have great potential for oils and oilseeds production,obvious complementary advantages in trade structure,and huge space for future cooperation.It is suggested that Brazil should be included in the"Belt and Road"co-construction category to promote the continuous deepening of agricultural cooperation between China and Brazil.It is suggested to explore regional agricultural trade agreements among BRICS countries,promote currency settlement and exchange among BRICS countries,and enhance the facilitation and stability of BRICS trade.It is suggested that China should increase its investment in BRICS countries and export advanced technology and management experience to benefit local agricultural development and achieve a mutually beneficial and win-win situation.展开更多
The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinea...The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinear in nature,pose challenges for accurate description through physical models.While field data provides insights into real-world effects,its limited volume and quality restrict its utility.Complementing this,numerical simulation models offer effective support.To harness the strengths of both data-driven and model-driven approaches,this study established a shale oil production capacity prediction model based on a machine learning combination model.Leveraging fracturing development data from 236 wells in the field,a data-driven method employing the random forest algorithm is implemented to identify the main controlling factors for different types of shale oil reservoirs.Through the combination model integrating support vector machine(SVM)algorithm and back propagation neural network(BPNN),a model-driven shale oil production capacity prediction model is developed,capable of swiftly responding to shale oil development performance under varying geological,fluid,and well conditions.The results of numerical experiments show that the proposed method demonstrates a notable enhancement in R2 by 22.5%and 5.8%compared to singular machine learning models like SVM and BPNN,showcasing its superior precision in predicting shale oil production capacity across diverse datasets.展开更多
The clay mineral content of Daqing Gulong shale is in the range of about 35%–45%,with particle sizes less than 0.0039 mm.The horizontal fluidity of oil in Gulong shale is poor,with near-zero vertical flowability.As a...The clay mineral content of Daqing Gulong shale is in the range of about 35%–45%,with particle sizes less than 0.0039 mm.The horizontal fluidity of oil in Gulong shale is poor,with near-zero vertical flowability.As a result,Gulong shale has been considered to lack commercial value.In recent years,however,interdisciplinary research in geoscience,percolation mechanics,thermodynamics,and surface mechanics has demonstrated that Gulong shale oil has a high degree of maturity and a high residual hydrocarbon content.The expulsion efficiency of Gulong shale in the high mature stage is 32%–48%.Favorable storage spaces in Gulong shale include connecting pores and lamellar fractures developed between and within organic matter and clay mineral complexes.The shale oil mainly occurs in micro-and nano-pores,bedding fractures,and lamellar fractures,with a high gas–oil ratio and medium–high movable oil saturation.Gulong shale has the characteristics of high hardness,a high elastic modulus,and high fracture toughness.This study achieves breakthroughs in the exploration and development of Gulong shale,including the theories of hydrocarbon generation and accumulation,the technologies of mobility and fracturing,and recoverability.It confirms the major transition of Gulong shale from oil generation to oil production,which has extremely significant scientific value and application potential for China’s petroleum industry.展开更多
Based on the results of drilling,tests and simulation experiments,the shales of the Cretaceous Qingshankou Formation in the Gulong Sag of the Songliao Basin are discussed with respect to hydrocarbon generation evoluti...Based on the results of drilling,tests and simulation experiments,the shales of the Cretaceous Qingshankou Formation in the Gulong Sag of the Songliao Basin are discussed with respect to hydrocarbon generation evolution,shale oil occurrence,and pore/fracture evolution mechanism.In conjunction with a substantial amount of oil testing and production data,the Gulong shale oil enrichment layers are evaluated and the production behaviors and decline law are analyzed.The results are drawn in four aspects.First,the Gulong shales are in the stage of extensive hydrocarbon expulsion when R_(0) is 1.0%-1.2%,with the peak hydrocarbon expulsion efficiency of 49.5%approximately.In the low-medium maturity stage,shale oil migrates from kerogen to rocks and organic pores/fractures.In the medium-high maturity stage,shale oil transforms from adsorbed state to free state.Second,the clay mineral intergranular pores/fractures,dissolution pores,and organic pores make up the majority of the pore structure.During the transformation,clay minerals undergo significant intergranular pore/fracture development between the minerals such as illite and illite/smectite mixed layer.A network of pores/fractures is formed by organic matter cracking.Third,free hydrocarbon content,effective porosity,total porosity,and brittle mineral content are the core indicators for the evaluation of shale oil enrichment layers.Class-I layers are defined as free hydrocarbon content equal or greater than 6.0 mg/g,effective porosity equal or greater than 3.5%,total porosity equal or greater than 8.0%,and brittle mineral content equal or greater than 50%.It is believed that the favourable oil layers are Q2-Q3 and Q8-Q9.Fourth,the horizontal wells in the core area of the light oil zone exhibit a high cumulative production in the first year,and present a hyperbolic production decline pattern,with the decline index of 0.85-0.95,the first-year decline rate of 14.5%-26.5%,and the single-well estimated ultimate recovery(EUR)greater than 2.0×10^(4)t.In practical exploration and production,more efforts will be devoted to the clarification of hydrocarbon generation and expulsion mechanisms,accurate testing of porosity and hydrocarbon content/phase of shale under formation conditions,precise delineation of the boundary of enrichment area,relationship between mechanical properties and stimulated reservoir volume,and enhanced oil recovery,in order to improve the EUR and achieve a large-scale,efficient development of shale oil.展开更多
A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.After providing an extensive review of the existing scientific and technical literature on this subject,the pr...A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.After providing an extensive review of the existing scientific and technical literature on this subject,the proposed integrated technology is described together with the related process flow diagram,the criteria used to select a tar-get facility for its implementation and the outcomes of the laboratory studies conducted to analyze emulsion formation and separation kinetics.Moreover,the outcomes of numerical simulations performed using Ansys CFX software are also presented.According to these results,using the proposed approach the incremental oil production may reach 1.2 t/day(with a 13%increase)and more,even at low flow rates(less than 10 t/day),thereby providing evidence for the benefits associated with this integrated technology.展开更多
A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale ...A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale oil in pore throat by dynamic imbibition and the influencing factors on the development effect of dynamic imbibition were analyzed.The dynamic seepage process of fracking-soaking-backflow-production integration was simulated,which reveals the dynamic production characteristics at different development stages and their contribution to enhancing oil recovery(EOR).The seepage of tight/shale reservoirs can be divided into three stages:strong displacement and weak imbibition as oil produced rapidly by displacement from macropores and fractures,weak displacement and strong imbibition as oil produced slowly by reverse imbibition from small pores,and weak displacement and weak imbibition at dynamic equilibrium.The greater displacement pressure results in the higher displacement recovery and the lower imbibition recovery.However,if the displacement pressure is too high,the injected water is easy to break through the front and reduce the recovery degree.The higher the permeability,the greater the imbibition and displacement recovery,the shorter the time of imbibition balance,and the higher the final recovery.The fractures can effectively increase the imbibition contact area between matrix and water,reduce the oil-water seepage resistance,promote the oil-water displacement between matrix and fracture,and improve the oil displacement rate and recovery of the matrix.The soaking after fracturing is beneficial to the imbibition replacement and energy storage of the fluid;also,the effective use of the carrying of the backflow fluid and the displacement in the mining stage is the key to enhancing oil recovery.展开更多
Two field experiments were conducted during the main seasons of 2021/2022 at the Research and Production Station of National Research Centre in Egypt to investigate the effects of farmyard manure(FYM)and boron on Cano...Two field experiments were conducted during the main seasons of 2021/2022 at the Research and Production Station of National Research Centre in Egypt to investigate the effects of farmyard manure(FYM)and boron on Canola growth,yield,oil yield,and quality.The results unequivocally demonstrated that the combined application of FYM at a rate of 14.4 ton ha^(-1)with a foliar spray of boron at 100 ppm positively influenced plant characteristics,leading to enhanced growth rates and higher yields compared to the control group.Moreover,this integrated approach significantly improved nutrient content by enhancing levels of oil content,carbohydrates,proteins,phenolics,flavonoids,and total soluble sugars.These findings provide compelling evidence that utilizing farm manure along with boron can effectively enhance Canola properties in newly reclaimed soils while promoting sustainable agricultural practices.展开更多
Heavy oil represents a vital petroleum resource worldwide.As one of the major producers,China is facing great challenges in effective and economic production of heavy oil due to reservoir complexity.Plenty of efforts ...Heavy oil represents a vital petroleum resource worldwide.As one of the major producers,China is facing great challenges in effective and economic production of heavy oil due to reservoir complexity.Plenty of efforts have been made to promote innovative advances in thermal recovery modes,methods,and processes for heavy oil in the country.The thermal recovery mode has been shifted from simple steam injection to a more comprehensive“thermal+"strategy,such as a novel N2-steam hybrid process and CO_(2)-enhanced thermal recovery techniques.These advanced techniques break through the challenges of heavy oil extraction from less accessible reservoirs with thinner oil layers and greater burial depths.Regarding thermal recovery methods,China has developed the steam-assisted gravity drainage method integrating flooding and drainage(also referred to as the hybrid flooding-drainage SAGD technology)for highly heterogeneous ultra-heavy oil reservoirs and the fire flooding method for nearly depleted heavy oil reservoirs,substantially improving oil recovery.Furthermore,a range of processes have been developed for heavy oil production,including the open hole completion process using sand control screens for horizontal wells,the process of integrated injection-recovery with horizontal pump for horizontal wells,the steam dryness maintenance,measurement,and control process,efficient and environment-friendly circulating fluidized bed(CFB)boilers with high steam dryness,the recycling process of produced water,and the thermal recovery process for offshore heavy oil.Based on the advances in methodology,technology,and philosophy,a series of supporting technologies for heavy oil production have been developed,leading to the breakthrough of existing technical limit of heavy oil recovery and the expansion into new exploitation targets.For the future heavy oil production in China,it is necessary to embrace a green,low-carbon,and energy-efficient development strategy,and to expand heavy oil extraction in reservoirs with larger burial depth,more viscous oil,thinner oil layers,and lower permeability.Moreover,it is highly recommended to collaboratively maximize oil recovery and oil-to-steam ratio through technological innovations,and boost intelligentization of heavy oil production.展开更多
Over the last decade,the oriented strand board(OSB)market presented meaningful growth.However,as a woodbased product,because of its anatomical structure and chemical composition,OSB can be damaged by biodeterioration ...Over the last decade,the oriented strand board(OSB)market presented meaningful growth.However,as a woodbased product,because of its anatomical structure and chemical composition,OSB can be damaged by biodeterioration agents.Given that,the biodeterioration of OSB panels must be investigated to improve its durability.In this way,this work analyses the biological resistance against termites(Cryptotermes brevis and Nasutitermes corniger)of heat-treated OSB panels made with Eucalyptus wood glued with vegetable-based polyurethane-an ecofriendly and sustainable adhesive derived from castor oil.Various panels were produced with different layers compositions(face:core:face of 25:50:25 and 30:40:30)in wood mass proportion and were submitted to postproduction heat treatment(at 175℃ and 200℃)replacing the use of chemical insecticides.The influence of the layers variation and heat treatment temperature were evaluated,and these results were compared with commercial panels(made from pinus wood with insecticide).The results showed that the heat treatment did not improve the resistance against termite attack.However,all the experimental panels presented a satisfactory performance that was compatible with the commercial panels produced with insecticide available in the Brazilian market.The combination of Eucalyptus wood and castor oil adhesive to produce OSB,in any variation of layer composition,demonstrated natural resistance against termite attack compatible with the commercial panels,even without using chemical additives to increase durability.展开更多
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe...Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.展开更多
The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 hor...The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 horizontal wells.The synergy of three elements(storage,fracture and pressure)contributes to the enrichment and high production of shale oil in Jiyang Depression.The storage element controls the enrichment of shale oil;specifically,the presence of inorganic pores and fractures,as well as laminae of lime-mud rocks,in the saline lake basin,is conducive to the storage of shale oil,and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production.The fracture element controls the shale oil flow;specifically,natural fractures act as flow channels for shale oil to migrate and accumulate,and induced fractures communicate natural fractures to form complex fracture network,which is fundamental to high production.The pressure element controls the high and stable production of shale oil;specifically,the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons,and fracturing stimulation significantly increases the elastic energy of rock and fluid,improves the imbibition replacement of oil in the pores/fractures,and reduces the stress sensitivity,guaranteeing the stable production of shale oil for a long time.Based on the ternary-element storage and flow concept,a 3D development technology was formed,with the core techniques of 3D well pattern optimization,3D balanced fracturing,and full-cycle optimization of adjustment and control.This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression.展开更多
This study investigates the optical properties of sesame oil from traditional and industrial sources using a custom-designed semiconductor laser spectrometer, UV-Vis spectroscopy, and FTIR spectroscopy. Six samples we...This study investigates the optical properties of sesame oil from traditional and industrial sources using a custom-designed semiconductor laser spectrometer, UV-Vis spectroscopy, and FTIR spectroscopy. Six samples were collected from traditional presses and factories in Khartoum State and White Nile State. The spectrometer, constructed with a 680 nm semiconductor laser and various resistor values, measured the absorbance of sesame oil samples. UV-Vis spectroscopy identified absorbance peaks at 670 nm and 417 nm, corresponding to chlorophyll a and b. FTIR analysis showed nearly identical spectra among the samples, indicating similar chemical compositions. Laser spectrometer analysis revealed specific absorbance values for each sample. The results highlight the feasibility of using a 680 nm semiconductor laser for analyzing sesame oil, providing a cost-effective alternative to other wavelengths. This study demonstrates the potential of integrating traditional methods with modern spectroscopic techniques for the quality assessment of sesame oil.展开更多
Generically, SCM may be said to include all activities carried out to ensure proper functioning of the supply chain. The activities included in proper management of a supply chain broadly include logistics activities,...Generically, SCM may be said to include all activities carried out to ensure proper functioning of the supply chain. The activities included in proper management of a supply chain broadly include logistics activities, planning and control of the flow of information and materials in a firm, management of relationships with other organizations and government intervention, However, crude oil theft and pipeline vandalism are established products supply chain disruptors in Nigeria which are rendering the task of running an efficient petroleum supply chain onerous. This paper aims to establish the importance of effective supply chain strategies for companies in the oil and gas industry with special focus on the Nigerian oil and gas sector and the strategies by which the state oil and gas corporation in this sector may mitigate disruptions to its supply chain. This study investigates the enhancement of supply chain strategies towards meeting the challenge of crude oil theft and pipeline vandalism, using the Nigerian National Corporation (NNPC) as a case study. Based on this study, data were collected from two sources: A summary of incident reports obtained from NNPC and an interview with personnel in the PPMC Department. Incident report refers to a report produced when accidents such as equipment failure, injury, loss of life, or fire occur at the work site. Content analysis is utilized to evaluate data obtained from interview responses, CBN financial stability reports, NDIC annual reports, circulars, banking supervision reports and implementation guidelines. The study found out that NNPC should endeavor to sustain its value chain and ward of pipeline vandals and crude oil thieves by engaging in community partnership, detailing security outfits to ensure its pipelines’ right of way and bridging. Concluded that the oil supply chain of the Nigerian National Petroleum Corporation has been plagued by disruptions in the form of crude oil theft and pipeline vandalism which has had debilitating effects on its value.展开更多
The distribution and treatment of harmful gas (H2S) in the Liaohe Oilfield, Northeast China, were investigated in this study. It was found that abundant toxic gas (H2S) is generated in thermal recovery of heavy oi...The distribution and treatment of harmful gas (H2S) in the Liaohe Oilfield, Northeast China, were investigated in this study. It was found that abundant toxic gas (H2S) is generated in thermal recovery of heavy oil. The H2S gas is mainly formed during thermochemical sulfate reduction (TSR) occurring in oil reservoirs or the thermal decomposition of sulfocompounds (TDS) in crude oil. H2S generation is controlled by thermal recovery time, temperature and the injected chemical compounds. The quantity of SO4^2- in the injected compounds is the most influencing factor for the rate of TSR reaction. Therefore, for prevention of H2S formation, periodic and effective monitoring should be undertaken and adequate H2S absorbent should also be provided during thermal recovery of heavy oil. The result suggests that great efforts should be made to reduce the SO4^2- source in heavy oil recovery, so as to restrain H2S generation in reservoirs. In situ burning or desulfurizer adsorption are suggested to reduce H2S levels. Prediction and prevention of H2S are important in heavy oil production. This will minimize environmental and human health risks, as well as equipment corrosion.展开更多
Assuming that oil price follows the stochastic processes of Geometric Brownian Motion (GBM) or the Mean-Reverting Process (MRP), this paper takes the net present value (NPV) as an economic index and models the P...Assuming that oil price follows the stochastic processes of Geometric Brownian Motion (GBM) or the Mean-Reverting Process (MRP), this paper takes the net present value (NPV) as an economic index and models the PSC in 11 different scenarios by changing the value of each contract element (i.e. royalty, cost oil, profit oil as well as income tax). Then the NPVs are shown in probability density graphs to investigate the effect of different elements on contract economics. The results show that under oil price uncertainty the influence of profit oil and income tax on NPV are more significant than those of royalty and cost oil, while a tax holiday could improve the contractor's financial status remarkably. Results also show that MRP is more appropriate for cases with low future oil price volatility, and GBM is best for high future oil price volatility.展开更多
Development strategy for heavy-oil reservoirs is one of the important research interests in China National Offshore Oil Corp. (CNOOC) that plans a highly effective development for heavy oil fields in multilayered fl...Development strategy for heavy-oil reservoirs is one of the important research interests in China National Offshore Oil Corp. (CNOOC) that plans a highly effective development for heavy oil fields in multilayered fluvial reservoirs because of their significant influence on marine oil and even on China's petroleum production. The characteristics analysis of multilayered fluvial reservoirs in the heavy oil fields in Bohai Bay indicates that large amounts ofoil were trapped in the channel, point bar and channel bar sands. The reserves distribution of 8 oilfields illustrates that the reserves trapped in the main sands, which is 20%-40% of all of the sand bodies, account for 70%-90% of total reserves of the heavy oil fields. The cumulative production from high productivity wells (50% of the total wells) was 75%-90% of the production of the overall oilfield, while only 3%-10% of the total production was from the low productivity wells (30% of the total wells). And the high productivity wells were drilled in the sands with high reserves abundance. Based on the above information the development strategy was proposed, which includes reserves production planning, selection of well configuration, productivity design, and development modification at different stages.展开更多
This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoir...This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoirs and produced by directional wells. There are mainly four contributions of this paper to the existing body of literature. Firstly, an equivalent simulation method of the pseudo start pressure gradient (PSPG) is developed to quantitatively predict the value of?IIF?under different geological reservoir conditions. Secondly, the interlayer interference is extended in time, and the time period of the study extends from a water cut stage to the whole process from the oil well open to produce?a?high water cut. Thirdly, besides the conventional productivity interlayer interference factor (PIIF), a new parameter, that is, the oil recovery interlayer interference factor (RIIF) is put forward.?RIIF?can be used to evaluate the technical indexes of stratified development and multilayer co-production effectively. Fourthly,?the?effectsof various geological reservoir parameters such as reservoir permeability and crude oil viscosity, etc. on the?PIIF?and?RIIF’s?type curves?are?discussed in detail and the typical plate?is?plotted. The research results provide a foundation for the effective development of multilayer heavy oil reservoirs.展开更多
基金supported by the State of Texas Advanced Resource Recovery(STARR)programthe Bureau of Economic Geology's Tight Oil Resource Assessment(TORA)Mudrock Systems Research Laboratory(MSRL)consortia。
文摘We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.
基金funded by the National Natural Science Foundation of China(No.51974356).
文摘Accurately predicting the production rate and estimated ultimate recovery(EUR)of shale oil wells is vital for efficient shale oil development.Although numerical simulations provide accurate predictions,their high time,data,and labor demands call for a swifter,yet precise,method.This study introduces the DuongeCNNeLSTM(D-C-L)model,which integrates a convolutional neural network(CNN)with a long short-term memory(LSTM)network and is grounded on the empirical Duong model for physical constraints.Compared to traditional approaches,the D-C-L model demonstrates superior precision,efficiency,and cost-effectiveness in predicting shale oil production.
基金supported by a key project of the National Natural Science Foundation of China(No 21938003)the Postdoctoral Foundation of the PetroChina Dagang Oilfield Company(No.2023BO59).
文摘Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition of demulsifiers for oil-water separation.This inevitably increases the exploitation cost and environmental pollution risk.Switchable surfactants have garnered much attention due to their dual capabilities of underground heavy oil emulsification and surface demulsification.This study focuses on the fundamental working principles and classification of novel switchable surfactants for oil displacement developed in recent years.It offers a comprehensive overview of the latest advances in the applications of switchable surfactants in the fields of enhanced oil recovery(EOR),oil sand washing,and oil-water separation.Furthermore,it highlights the existing challenges and future development directions of switchable surfactants for heavy oil recovery.
文摘In order to promote agricultural production and trade cooperation among BRICS countries,and ensure the security and stability of the oils and oilseeds industrial and supply chains in China and the world,the production,consumption,trade trend,and cooperation potential of oils and oilseeds in BRICS countries were expounded,and relevant policy recommendations were put forward.Most of the BRICS countries are major agricultural producers,and they are also important agricultural product consumption markets in the world.In 2023/2024,the production and consumption of oilseeds in BRICS countries account for nearly half of the world's total;the production of vegetable oils exceeds a quarter of the world's total,and the consumption of vegetable oils accounts for 40%of the world's total.In 2023/2024,the import and export volume of oilseeds exceeds half of the world's total;vegetable oil imports account for 40%of the world's total,and exports account for about one tenth of the world's total.China's imports of oilseeds and oils from BRICS countries account for 68%and 29%of its global imports in 2023,respectively.BRICS countries are rich in agricultural land resources,have great potential for oils and oilseeds production,obvious complementary advantages in trade structure,and huge space for future cooperation.It is suggested that Brazil should be included in the"Belt and Road"co-construction category to promote the continuous deepening of agricultural cooperation between China and Brazil.It is suggested to explore regional agricultural trade agreements among BRICS countries,promote currency settlement and exchange among BRICS countries,and enhance the facilitation and stability of BRICS trade.It is suggested that China should increase its investment in BRICS countries and export advanced technology and management experience to benefit local agricultural development and achieve a mutually beneficial and win-win situation.
基金supported by the China Postdoctoral Science Foundation(2021M702304)Natural Science Foundation of Shandong Province(ZR20210E260).
文摘The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinear in nature,pose challenges for accurate description through physical models.While field data provides insights into real-world effects,its limited volume and quality restrict its utility.Complementing this,numerical simulation models offer effective support.To harness the strengths of both data-driven and model-driven approaches,this study established a shale oil production capacity prediction model based on a machine learning combination model.Leveraging fracturing development data from 236 wells in the field,a data-driven method employing the random forest algorithm is implemented to identify the main controlling factors for different types of shale oil reservoirs.Through the combination model integrating support vector machine(SVM)algorithm and back propagation neural network(BPNN),a model-driven shale oil production capacity prediction model is developed,capable of swiftly responding to shale oil development performance under varying geological,fluid,and well conditions.The results of numerical experiments show that the proposed method demonstrates a notable enhancement in R2 by 22.5%and 5.8%compared to singular machine learning models like SVM and BPNN,showcasing its superior precision in predicting shale oil production capacity across diverse datasets.
基金supported by the National Natural Science Foundation of China(72088101 and 42090025)the China National Petroleum Corporation(2019E-26 and YGJ2020-3)。
文摘The clay mineral content of Daqing Gulong shale is in the range of about 35%–45%,with particle sizes less than 0.0039 mm.The horizontal fluidity of oil in Gulong shale is poor,with near-zero vertical flowability.As a result,Gulong shale has been considered to lack commercial value.In recent years,however,interdisciplinary research in geoscience,percolation mechanics,thermodynamics,and surface mechanics has demonstrated that Gulong shale oil has a high degree of maturity and a high residual hydrocarbon content.The expulsion efficiency of Gulong shale in the high mature stage is 32%–48%.Favorable storage spaces in Gulong shale include connecting pores and lamellar fractures developed between and within organic matter and clay mineral complexes.The shale oil mainly occurs in micro-and nano-pores,bedding fractures,and lamellar fractures,with a high gas–oil ratio and medium–high movable oil saturation.Gulong shale has the characteristics of high hardness,a high elastic modulus,and high fracture toughness.This study achieves breakthroughs in the exploration and development of Gulong shale,including the theories of hydrocarbon generation and accumulation,the technologies of mobility and fracturing,and recoverability.It confirms the major transition of Gulong shale from oil generation to oil production,which has extremely significant scientific value and application potential for China’s petroleum industry.
基金Supported by the National Natural Science Foundation Project(42090020,42090025)Strategic Research of Oil and Gas Development Major Project of Ministry of Science and TechnologyPetroChina Scientific Research and Technological Development Project(2019E2601).
文摘Based on the results of drilling,tests and simulation experiments,the shales of the Cretaceous Qingshankou Formation in the Gulong Sag of the Songliao Basin are discussed with respect to hydrocarbon generation evolution,shale oil occurrence,and pore/fracture evolution mechanism.In conjunction with a substantial amount of oil testing and production data,the Gulong shale oil enrichment layers are evaluated and the production behaviors and decline law are analyzed.The results are drawn in four aspects.First,the Gulong shales are in the stage of extensive hydrocarbon expulsion when R_(0) is 1.0%-1.2%,with the peak hydrocarbon expulsion efficiency of 49.5%approximately.In the low-medium maturity stage,shale oil migrates from kerogen to rocks and organic pores/fractures.In the medium-high maturity stage,shale oil transforms from adsorbed state to free state.Second,the clay mineral intergranular pores/fractures,dissolution pores,and organic pores make up the majority of the pore structure.During the transformation,clay minerals undergo significant intergranular pore/fracture development between the minerals such as illite and illite/smectite mixed layer.A network of pores/fractures is formed by organic matter cracking.Third,free hydrocarbon content,effective porosity,total porosity,and brittle mineral content are the core indicators for the evaluation of shale oil enrichment layers.Class-I layers are defined as free hydrocarbon content equal or greater than 6.0 mg/g,effective porosity equal or greater than 3.5%,total porosity equal or greater than 8.0%,and brittle mineral content equal or greater than 50%.It is believed that the favourable oil layers are Q2-Q3 and Q8-Q9.Fourth,the horizontal wells in the core area of the light oil zone exhibit a high cumulative production in the first year,and present a hyperbolic production decline pattern,with the decline index of 0.85-0.95,the first-year decline rate of 14.5%-26.5%,and the single-well estimated ultimate recovery(EUR)greater than 2.0×10^(4)t.In practical exploration and production,more efforts will be devoted to the clarification of hydrocarbon generation and expulsion mechanisms,accurate testing of porosity and hydrocarbon content/phase of shale under formation conditions,precise delineation of the boundary of enrichment area,relationship between mechanical properties and stimulated reservoir volume,and enhanced oil recovery,in order to improve the EUR and achieve a large-scale,efficient development of shale oil.
基金supported by the Government of Perm Krai,Research Project No.С-26/510。
文摘A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.After providing an extensive review of the existing scientific and technical literature on this subject,the proposed integrated technology is described together with the related process flow diagram,the criteria used to select a tar-get facility for its implementation and the outcomes of the laboratory studies conducted to analyze emulsion formation and separation kinetics.Moreover,the outcomes of numerical simulations performed using Ansys CFX software are also presented.According to these results,using the proposed approach the incremental oil production may reach 1.2 t/day(with a 13%increase)and more,even at low flow rates(less than 10 t/day),thereby providing evidence for the benefits associated with this integrated technology.
基金Supported by the PetroChina Science and Technology Major Project(2021-117)PetroChina CCUS Major Science and Technology Project(2021ZZ01-03)。
文摘A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale oil in pore throat by dynamic imbibition and the influencing factors on the development effect of dynamic imbibition were analyzed.The dynamic seepage process of fracking-soaking-backflow-production integration was simulated,which reveals the dynamic production characteristics at different development stages and their contribution to enhancing oil recovery(EOR).The seepage of tight/shale reservoirs can be divided into three stages:strong displacement and weak imbibition as oil produced rapidly by displacement from macropores and fractures,weak displacement and strong imbibition as oil produced slowly by reverse imbibition from small pores,and weak displacement and weak imbibition at dynamic equilibrium.The greater displacement pressure results in the higher displacement recovery and the lower imbibition recovery.However,if the displacement pressure is too high,the injected water is easy to break through the front and reduce the recovery degree.The higher the permeability,the greater the imbibition and displacement recovery,the shorter the time of imbibition balance,and the higher the final recovery.The fractures can effectively increase the imbibition contact area between matrix and water,reduce the oil-water seepage resistance,promote the oil-water displacement between matrix and fracture,and improve the oil displacement rate and recovery of the matrix.The soaking after fracturing is beneficial to the imbibition replacement and energy storage of the fluid;also,the effective use of the carrying of the backflow fluid and the displacement in the mining stage is the key to enhancing oil recovery.
基金supported and funded by National Research Centre,Egypt
文摘Two field experiments were conducted during the main seasons of 2021/2022 at the Research and Production Station of National Research Centre in Egypt to investigate the effects of farmyard manure(FYM)and boron on Canola growth,yield,oil yield,and quality.The results unequivocally demonstrated that the combined application of FYM at a rate of 14.4 ton ha^(-1)with a foliar spray of boron at 100 ppm positively influenced plant characteristics,leading to enhanced growth rates and higher yields compared to the control group.Moreover,this integrated approach significantly improved nutrient content by enhancing levels of oil content,carbohydrates,proteins,phenolics,flavonoids,and total soluble sugars.These findings provide compelling evidence that utilizing farm manure along with boron can effectively enhance Canola properties in newly reclaimed soils while promoting sustainable agricultural practices.
基金funded by a project of the National Natural Science Foundation of China entitled Basic study on mechanisms and key technologies of high efficiency hybrid multi-element thermal recovery in marginal heavy oil reservoirs(No.U20B6003).
文摘Heavy oil represents a vital petroleum resource worldwide.As one of the major producers,China is facing great challenges in effective and economic production of heavy oil due to reservoir complexity.Plenty of efforts have been made to promote innovative advances in thermal recovery modes,methods,and processes for heavy oil in the country.The thermal recovery mode has been shifted from simple steam injection to a more comprehensive“thermal+"strategy,such as a novel N2-steam hybrid process and CO_(2)-enhanced thermal recovery techniques.These advanced techniques break through the challenges of heavy oil extraction from less accessible reservoirs with thinner oil layers and greater burial depths.Regarding thermal recovery methods,China has developed the steam-assisted gravity drainage method integrating flooding and drainage(also referred to as the hybrid flooding-drainage SAGD technology)for highly heterogeneous ultra-heavy oil reservoirs and the fire flooding method for nearly depleted heavy oil reservoirs,substantially improving oil recovery.Furthermore,a range of processes have been developed for heavy oil production,including the open hole completion process using sand control screens for horizontal wells,the process of integrated injection-recovery with horizontal pump for horizontal wells,the steam dryness maintenance,measurement,and control process,efficient and environment-friendly circulating fluidized bed(CFB)boilers with high steam dryness,the recycling process of produced water,and the thermal recovery process for offshore heavy oil.Based on the advances in methodology,technology,and philosophy,a series of supporting technologies for heavy oil production have been developed,leading to the breakthrough of existing technical limit of heavy oil recovery and the expansion into new exploitation targets.For the future heavy oil production in China,it is necessary to embrace a green,low-carbon,and energy-efficient development strategy,and to expand heavy oil extraction in reservoirs with larger burial depth,more viscous oil,thinner oil layers,and lower permeability.Moreover,it is highly recommended to collaboratively maximize oil recovery and oil-to-steam ratio through technological innovations,and boost intelligentization of heavy oil production.
基金financed by Coordination for the Improvement of Higher Education Personnel,Brazil(CAPES,https://www.gov.br/capes/pt-br)(accessed on 22 September 2024)Finance Code 001(ESS,FDM)+1 种基金Sao Paulo State Research Support Foundation(FAPESP,https://fapesp.br/)(accessed on 22 September 2024)(CIC,grant number 2015/04660-0)National Council for Scientific and Technological Development(CNPq,https://www.gov.br/cnpq/pt-br)(accessed on 22 September 2024)(grant numbers 308937/2021-0(CIC),306576/2020-1(ECB),and 303099/2022-4(JBP)).
文摘Over the last decade,the oriented strand board(OSB)market presented meaningful growth.However,as a woodbased product,because of its anatomical structure and chemical composition,OSB can be damaged by biodeterioration agents.Given that,the biodeterioration of OSB panels must be investigated to improve its durability.In this way,this work analyses the biological resistance against termites(Cryptotermes brevis and Nasutitermes corniger)of heat-treated OSB panels made with Eucalyptus wood glued with vegetable-based polyurethane-an ecofriendly and sustainable adhesive derived from castor oil.Various panels were produced with different layers compositions(face:core:face of 25:50:25 and 30:40:30)in wood mass proportion and were submitted to postproduction heat treatment(at 175℃ and 200℃)replacing the use of chemical insecticides.The influence of the layers variation and heat treatment temperature were evaluated,and these results were compared with commercial panels(made from pinus wood with insecticide).The results showed that the heat treatment did not improve the resistance against termite attack.However,all the experimental panels presented a satisfactory performance that was compatible with the commercial panels produced with insecticide available in the Brazilian market.The combination of Eucalyptus wood and castor oil adhesive to produce OSB,in any variation of layer composition,demonstrated natural resistance against termite attack compatible with the commercial panels,even without using chemical additives to increase durability.
基金This work was supported by the Pilot Seed Grant(Grant No.RES0049944)the Collaborative Research Project(Grant No.RES0043251)from the University of Alberta.
文摘Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.
基金Supported by Sinopec Key Science and Technology Research Project(P21060)。
文摘The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 horizontal wells.The synergy of three elements(storage,fracture and pressure)contributes to the enrichment and high production of shale oil in Jiyang Depression.The storage element controls the enrichment of shale oil;specifically,the presence of inorganic pores and fractures,as well as laminae of lime-mud rocks,in the saline lake basin,is conducive to the storage of shale oil,and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production.The fracture element controls the shale oil flow;specifically,natural fractures act as flow channels for shale oil to migrate and accumulate,and induced fractures communicate natural fractures to form complex fracture network,which is fundamental to high production.The pressure element controls the high and stable production of shale oil;specifically,the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons,and fracturing stimulation significantly increases the elastic energy of rock and fluid,improves the imbibition replacement of oil in the pores/fractures,and reduces the stress sensitivity,guaranteeing the stable production of shale oil for a long time.Based on the ternary-element storage and flow concept,a 3D development technology was formed,with the core techniques of 3D well pattern optimization,3D balanced fracturing,and full-cycle optimization of adjustment and control.This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression.
文摘This study investigates the optical properties of sesame oil from traditional and industrial sources using a custom-designed semiconductor laser spectrometer, UV-Vis spectroscopy, and FTIR spectroscopy. Six samples were collected from traditional presses and factories in Khartoum State and White Nile State. The spectrometer, constructed with a 680 nm semiconductor laser and various resistor values, measured the absorbance of sesame oil samples. UV-Vis spectroscopy identified absorbance peaks at 670 nm and 417 nm, corresponding to chlorophyll a and b. FTIR analysis showed nearly identical spectra among the samples, indicating similar chemical compositions. Laser spectrometer analysis revealed specific absorbance values for each sample. The results highlight the feasibility of using a 680 nm semiconductor laser for analyzing sesame oil, providing a cost-effective alternative to other wavelengths. This study demonstrates the potential of integrating traditional methods with modern spectroscopic techniques for the quality assessment of sesame oil.
文摘Generically, SCM may be said to include all activities carried out to ensure proper functioning of the supply chain. The activities included in proper management of a supply chain broadly include logistics activities, planning and control of the flow of information and materials in a firm, management of relationships with other organizations and government intervention, However, crude oil theft and pipeline vandalism are established products supply chain disruptors in Nigeria which are rendering the task of running an efficient petroleum supply chain onerous. This paper aims to establish the importance of effective supply chain strategies for companies in the oil and gas industry with special focus on the Nigerian oil and gas sector and the strategies by which the state oil and gas corporation in this sector may mitigate disruptions to its supply chain. This study investigates the enhancement of supply chain strategies towards meeting the challenge of crude oil theft and pipeline vandalism, using the Nigerian National Corporation (NNPC) as a case study. Based on this study, data were collected from two sources: A summary of incident reports obtained from NNPC and an interview with personnel in the PPMC Department. Incident report refers to a report produced when accidents such as equipment failure, injury, loss of life, or fire occur at the work site. Content analysis is utilized to evaluate data obtained from interview responses, CBN financial stability reports, NDIC annual reports, circulars, banking supervision reports and implementation guidelines. The study found out that NNPC should endeavor to sustain its value chain and ward of pipeline vandals and crude oil thieves by engaging in community partnership, detailing security outfits to ensure its pipelines’ right of way and bridging. Concluded that the oil supply chain of the Nigerian National Petroleum Corporation has been plagued by disruptions in the form of crude oil theft and pipeline vandalism which has had debilitating effects on its value.
基金supported by the National Natural Science Foundation of China (Grant No. 4060201640773032)the National Basic Research Program of China (Contract No. 2007CB209500)
文摘The distribution and treatment of harmful gas (H2S) in the Liaohe Oilfield, Northeast China, were investigated in this study. It was found that abundant toxic gas (H2S) is generated in thermal recovery of heavy oil. The H2S gas is mainly formed during thermochemical sulfate reduction (TSR) occurring in oil reservoirs or the thermal decomposition of sulfocompounds (TDS) in crude oil. H2S generation is controlled by thermal recovery time, temperature and the injected chemical compounds. The quantity of SO4^2- in the injected compounds is the most influencing factor for the rate of TSR reaction. Therefore, for prevention of H2S formation, periodic and effective monitoring should be undertaken and adequate H2S absorbent should also be provided during thermal recovery of heavy oil. The result suggests that great efforts should be made to reduce the SO4^2- source in heavy oil recovery, so as to restrain H2S generation in reservoirs. In situ burning or desulfurizer adsorption are suggested to reduce H2S levels. Prediction and prevention of H2S are important in heavy oil production. This will minimize environmental and human health risks, as well as equipment corrosion.
基金financial support from Key Projects of Philosophy and Social Sciences Research of Ministry of Education (09JZD0038)
文摘Assuming that oil price follows the stochastic processes of Geometric Brownian Motion (GBM) or the Mean-Reverting Process (MRP), this paper takes the net present value (NPV) as an economic index and models the PSC in 11 different scenarios by changing the value of each contract element (i.e. royalty, cost oil, profit oil as well as income tax). Then the NPVs are shown in probability density graphs to investigate the effect of different elements on contract economics. The results show that under oil price uncertainty the influence of profit oil and income tax on NPV are more significant than those of royalty and cost oil, while a tax holiday could improve the contractor's financial status remarkably. Results also show that MRP is more appropriate for cases with low future oil price volatility, and GBM is best for high future oil price volatility.
文摘Development strategy for heavy-oil reservoirs is one of the important research interests in China National Offshore Oil Corp. (CNOOC) that plans a highly effective development for heavy oil fields in multilayered fluvial reservoirs because of their significant influence on marine oil and even on China's petroleum production. The characteristics analysis of multilayered fluvial reservoirs in the heavy oil fields in Bohai Bay indicates that large amounts ofoil were trapped in the channel, point bar and channel bar sands. The reserves distribution of 8 oilfields illustrates that the reserves trapped in the main sands, which is 20%-40% of all of the sand bodies, account for 70%-90% of total reserves of the heavy oil fields. The cumulative production from high productivity wells (50% of the total wells) was 75%-90% of the production of the overall oilfield, while only 3%-10% of the total production was from the low productivity wells (30% of the total wells). And the high productivity wells were drilled in the sands with high reserves abundance. Based on the above information the development strategy was proposed, which includes reserves production planning, selection of well configuration, productivity design, and development modification at different stages.
文摘This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoirs and produced by directional wells. There are mainly four contributions of this paper to the existing body of literature. Firstly, an equivalent simulation method of the pseudo start pressure gradient (PSPG) is developed to quantitatively predict the value of?IIF?under different geological reservoir conditions. Secondly, the interlayer interference is extended in time, and the time period of the study extends from a water cut stage to the whole process from the oil well open to produce?a?high water cut. Thirdly, besides the conventional productivity interlayer interference factor (PIIF), a new parameter, that is, the oil recovery interlayer interference factor (RIIF) is put forward.?RIIF?can be used to evaluate the technical indexes of stratified development and multilayer co-production effectively. Fourthly,?the?effectsof various geological reservoir parameters such as reservoir permeability and crude oil viscosity, etc. on the?PIIF?and?RIIF’s?type curves?are?discussed in detail and the typical plate?is?plotted. The research results provide a foundation for the effective development of multilayer heavy oil reservoirs.