期刊文献+
共找到220,988篇文章
< 1 2 250 >
每页显示 20 50 100
基于模糊GO-FLOW法的并网型微电网可靠性评估
1
作者 岳大为 姜毅 +3 位作者 杨明哲 李练兵 商悦阳 张帅龙 《太阳能学报》 北大核心 2025年第1期429-437,共9页
由于传统GO-FLOW法存在定常故障率和维修率的局限性,将一种新的可靠性评估算法—模糊GO-FLOW法引入并网型微电网可靠性评估中。首先,基于梯形模糊数,对GO-FLOW法进行改进;随后,根据并网型微电网系统结构,设计新型操作符并建立微电网系... 由于传统GO-FLOW法存在定常故障率和维修率的局限性,将一种新的可靠性评估算法—模糊GO-FLOW法引入并网型微电网可靠性评估中。首先,基于梯形模糊数,对GO-FLOW法进行改进;随后,根据并网型微电网系统结构,设计新型操作符并建立微电网系统的模糊GO-FLOW图,同时对操作符的模糊成功概率进行计算;最后,基于改进的IEEE RBTS BUS6 F4馈线系统,对比分析模糊GO-FLOW法、模糊化前GO-FLOW法和序贯蒙特卡洛模拟法。结果表明,在并网型微电网可靠性评估中,模糊GO-FLOW法具有较高的运算效率和计算精度。 展开更多
关键词 可靠性分析 微电网 光伏发电 GO-flow 梯形模糊数
下载PDF
THE GLOBAL EXISTENCE AND UNIQUENESS OF SMOOTH SOLUTIONS TO A FLUID-PARTICLE INTERACTION MODEL IN THE FLOWING REGIME
2
作者 Lin ZHENG Shu WANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1877-1885,共9页
This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation... This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method. 展开更多
关键词 fluid-particle flowing regime global existence
下载PDF
Hydrochemical Constraints on the Flowing Paths of Groundwater in Limestone Reservoirs beneath the Pingdingshan Coalfield in North China
3
作者 WU Zhanhui WANG Xinyi +2 位作者 LI Jiexiang CUI Junchao ZHANG Bo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第6期1615-1636,共22页
The karst groundwater of Cambrian limestone may become an important water source for industry and agriculture in the Pingdingshan area,and is also a potential threat to mining safety.Therefore,to find out the origin,f... The karst groundwater of Cambrian limestone may become an important water source for industry and agriculture in the Pingdingshan area,and is also a potential threat to mining safety.Therefore,to find out the origin,flow paths,and hydrogeochemical processes of karst groundwater beneath the Pingdingshan coalfield,a total of 16 water samples were collected.Our findings confirmed that the karst groundwater is mainly recharged by precipitation.The precipitation can directly supply the deep aquifer of the karst water system through the southwest limestone outcrops,and this area mostly includes the southern part of mines No.11,No.9,and the hidden outcrops in the southern part of mine No.2.What is more,the areas adjacent to the synclinal axis,including mines No.10,No.12,and No.8,may be the main discharge areas.A mixing model of^(87)Sr/^(86)Sr and Sr showed that in the southwest Pingdingshan coalfield,the proportion of precipitation decreased gradually from the recharge area to the discharge area,ranging from 89.1%to 17.1%.Besides,the northeast Pingdingshan coalfield is another recharge area for the whole karst system,thus,the infiltrating groundwater will indirectly supply the deep aquifer through Quaternary deposition near the mine No.13.Our research results can provide theoretical support for the prevention and control of groundwater disasters and the development and utilization of regional groundwater resources in the coalfield in Northern China. 展开更多
关键词 GROUNDWATER flowing path HYDROCHEMISTRY strontium isotope Pingdingshan coalfield
下载PDF
Flow and heat transfer characteristics of regenerative cooling parallel channel
4
作者 JU Yinchao LIU Xiaoyong +1 位作者 XU Guoqiang DONG Bensi 《推进技术》 北大核心 2025年第1期163-171,共9页
Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass rat... Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design. 展开更多
关键词 Regenerative cooling Heat transfer flow resistance ENGINE Parallel channel
下载PDF
Numerical Study of Cavitating Flows around a Hydrofoil with Deep Analysis of Vorticity Effects
5
作者 Shande Li Wen’an Zhong +1 位作者 Shaoxing Yu Hao Wang 《Fluid Dynamics & Materials Processing》 2025年第1期179-204,共26页
This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with ... This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with a filter-based density correction turbulence model and a modified Zwart cavitation model.The study investigates the dynamic cavitation features of the thermal fluid around the hydrofoil at various incoming flow velocities.It systematically elucidates the evolution of cavitation and vortex dynamics corresponding to each velocity condition.The results indicate that with increasing incoming flow velocity,distinct cavitation processes take place in the flow field. 展开更多
关键词 Cavitating flow HYDROFOIL flow velocity VORTICITY Computational Fluid Dynamics(CFD)
下载PDF
Boundary fluid constraints during electrochemical jet machining of large size emerging titanium alloy aerospace parts in gas–liquid flows:Experimental and numerical simulation
6
作者 Yang LIU Ningsong QU +1 位作者 Hansong LI Zhaoyang ZHANG 《Chinese Journal of Aeronautics》 2025年第1期115-130,共16页
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn... Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts. 展开更多
关键词 Electrochemical jet machining Titanium alloys Large size parts flow simulation Turbulent flow
原文传递
Numerical Simulation of Gas-LiquId Flow in a Horizontal Elbow
7
作者 Lihui Ma Wei Li +6 位作者 Yuanyuan Wang Pan Zhang Lina Wang Xinying Liu Meiqin Dong Xuewen Cao Jiang Bian 《Fluid Dynamics & Materials Processing》 2025年第1期107-119,共13页
Gas-liquid flow(GLF),especially slug and annular flows in oil and gas gathering and transportation pipelines,become particularly complex inside elbows and can easily exacerbate pipeline corrosion and damage.In thisstu... Gas-liquid flow(GLF),especially slug and annular flows in oil and gas gathering and transportation pipelines,become particularly complex inside elbows and can easily exacerbate pipeline corrosion and damage.In thisstudy,FLUENT was used to conduct 3D simulations of slug and annular flow in elbows for different velocitiesto assess the ensuing changes in terms of pressure.In particular,the multifluid VOF(Volume of Fraction)modelwas chosen.The results indicate that under both slug and annular flow conditions,the pressure inside the elbow islower than the outside.As the superficial velocity of liquid and gas increase,the pressure and liquid flow velocityat different positions of the elbow also increase,while the secondary flow weakens.Under annular flow conditions,the liquid film on the outer side of the elbow is thicker than that on the inner side,and the liquid velocityin the main liquid film zone is the lowest. 展开更多
关键词 Gas-liquid flow ELBOW CFD VOF model
下载PDF
Darboux transformation,positon solution,and breather solution of the third-order flow Gerdjikov–Ivanov equation
8
作者 Shuzhi Liu Ning-Yi Li +1 位作者 Xiaona Dong Maohua Li 《Chinese Physics B》 2025年第1期195-202,共8页
The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,ratio... The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,rational solution,positon solution,and breather solution of the TOFGI equation are obtained by taking zero seed solution and non-zero seed solution.The exact solutions and dynamic properties of the Gerdjikov–Ivanov(GI)equation and the TOFGI equation are compared in detail under the same conditions,and it is found that there are some differences in the velocities and trajectories of the solutions of the two equations. 展开更多
关键词 third-order flow Gerdjikov-Ivanov equation solitons positons BREATHERS
下载PDF
Mechanical properties and flow stress constitutive relationship of Ti–6Al–4V alloy with equiaxed microstructure at cryogenic temperatures
9
作者 Jingwen HU Xun CHEN +1 位作者 Yashun WANG Chen YANG 《Chinese Journal of Aeronautics》 2025年第1期365-379,共15页
This paper investigates the uniaxial tensile mechanical properties and flow behavior of Ti-6Al-4V alloys with equiaxed microstructure at cryogenic temperatures ranging from 77 K to298 K and strain rates from 10^(-4)/s... This paper investigates the uniaxial tensile mechanical properties and flow behavior of Ti-6Al-4V alloys with equiaxed microstructure at cryogenic temperatures ranging from 77 K to298 K and strain rates from 10^(-4)/s to 10^(-2)/s.Scanning electron microscopy is utilized to analyze the fracture morphology,aiming to reveal the fracture behavior at various temperatures.The applicability of the Zener-Hollomon parameter and the Johnson-Cook model in describing the flow stress of Ti-6Al-4V at cryogenic temperatures is analyzed.Moreover,a constitutive relationship modeling method based on the variational recurrent networks is proposed.Mechanical test results show a significant increase in the strength of equiaxed Ti-6Al-4V alloy under cryogenic conditions while the plastic deformation process is shortened.However,the fracture analysis indicates that even at 77 K,the fracture process is still dominated by ductile fracture,and brittle fracture does not occur within the range of 77 K to 298 K.The fitting results validate the performance of the Zener-Hollomon parameter and the Johnson-Cook model in describing the deformation flow stress of Ti-6Al-4V alloy at cryogenic temperatures.The results also indicate that the proposed constitutive relationship modeling method based on the variational recurrent network performs better,making it a potential method for widespread applications. 展开更多
关键词 Titanium alloys Mechanical properties Cryogenics Fracture testing flow behavior
原文传递
Multi-Scenario Probabilistic Load Flow Calculation Considering Wind Speed Correlation
10
作者 Xueqian Wang Hongsheng Su 《Energy Engineering》 2025年第2期667-680,共14页
As the proportion of newenergy increases,the traditional cumulant method(CM)produces significant errorswhen performing probabilistic load flow(PLF)calculations with large-scale wind power integrated.Considering the wi... As the proportion of newenergy increases,the traditional cumulant method(CM)produces significant errorswhen performing probabilistic load flow(PLF)calculations with large-scale wind power integrated.Considering the wind speed correlation,a multi-scenario PLF calculation method that combines random sampling and segmented discrete wind farm power was proposed.Firstly,based on constructing discrete scenes of wind farms,the Nataf transform is used to handle the correlation between wind speeds.Then,the random sampling method determines the output probability of discrete wind power scenarios when wind speed exhibits correlation.Finally,the PLF calculation results of each scenario areweighted and superimposed following the total probability formula to obtain the final power flow calculation result.Verified in the IEEE standard node system,the absolute percent error(APE)for the mean and standard deviation(SD)of the node voltages and branch active power are all within 1%,and the average root mean square(AMSR)values of the probability curves are all less than 1%. 展开更多
关键词 Wind speed correlation probabilistic load flow multi-scenario PIECEWISE cumulant method
下载PDF
Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath
11
作者 Teng Xia Xiaohui Zhang +4 位作者 Ding Ma Zhi Yang Xinting Tong Yutang Zhao Hua Wang 《Fluid Dynamics & Materials Processing》 2025年第1期121-140,共20页
Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphas... Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy.With this approach,feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphaseflow within the furnace.Understanding the flow structure and temperature distribution in this setup is crucial foroptimizing production.In this study,gas-liquid interactions,and temperature profiles under varying air-injectionconditions are examined by means of numerical simulation for a 3.2 m×20 m furnace.The results indicate that thehigh-velocity regions are essentially distributed near the lance within the reaction region and the flue gas outlet,while low-velocity regions are located close to the furnace walls on both side of the reaction region.Dead regionsappear in the sedimentation region,with gas velocities surpassing those of the molten phase.As the injection rateincreases from 0.50 to 0.80 Nm3/s,the stabilization time of the average liquid surface velocity decreases from 2.6 sto 1.9 s,exhibiting a similar trend to the gas holdup.During stabilization,the average liquid surface velocity risesfrom 0.505 to 0.702 m/s.The average turbulent kinetic energy(TKE)of the fluid in the molten bath increases from0.095 to 0.162 m^(2)/s^(2).The proportion of the area distribution with TKE greater than 0.10 m^(2)/s^(2) and the gas holdupat steady state both rise with an increase in the injection quantity.The maximum splashing height of the melt growsfrom approximately 0.756 to 1.154 m,with the affected area expanding from 14.239 to 20.498 m^(2).Under differentworking conditions with varying injection quantities,the average temperature changes in melt zone and flue gaszone of the furnace are small.The temperature in the melt and in the flue-gas zone spans the interval 1200℃–1257℃,and 1073℃–1121℃,respectively.The temperature distribution of the melt and flue gas reveals a patterncharacterized by elevated temperatures in the reaction zone,gradually transitioning to lower temperatures in thesedimentation region. 展开更多
关键词 Copper smelting bottom-blown melting furnace flow characteristics temperature distribution numerical simulation
下载PDF
Numerical Simulation of Blood Flow Dynamics in a Stenosed Artery Enhanced by Copper and Alumina Nanoparticles
12
作者 Haris Alam Zuberi Madan Lal +2 位作者 Amol Singh Nurul Amira Zainal Ali J.Chamkha 《Computer Modeling in Engineering & Sciences》 2025年第2期1839-1864,共26页
Nanotechnology holds immense importance in the biomedical field due to its ability to revolutionize healthcare on a molecular scale.Motivated by the imperative of enhancing patient outcomes,a comprehensive numerical s... Nanotechnology holds immense importance in the biomedical field due to its ability to revolutionize healthcare on a molecular scale.Motivated by the imperative of enhancing patient outcomes,a comprehensive numerical simulation study on the dynamics of blood flow in a stenosed artery,focusing on the effects of copper and alumina nanoparticles,is conducted.The study employs a 2-dimensional Newtonian blood flow model infused with copper and alumina nanoparticles,considering the influence of a magnetic field,thermal radiation,and various flow parameters.The governing differential equations are first non-dimensionalized to facilitate analysis and subsequently solved using the 4th order collocation method,bvp4c module in MATLAB.This approach obtains velocity and temperature profiles,revealing the impact of relevant parameters crucial in the biomedical field.The findings of this study underscore the significance of understanding blood flow dynamics in stenosed arteries and the potential benefits of utilizing copper and alumina nanoparticles in treatment strategies.The incorporation of nanoparticles introduces novel avenues for enhancing therapeutic interventions,particularly in mitigating the effects of stenosis.The elucidation of velocity and temperature profiles provides valuable insights into the behavior of blood flow under different conditions,thereby informing the development of targeted biomedical applications.The arterial curvature flow parameter influences temperature profiles,with increased parameters promoting more efficient heat dissipation.The elevated values of Prandtl number and thermal radiation parameter showcase the diminished temperature profiles,indicating stronger dominance of momentum diffusion over thermal diffusion and radiative heat transfer mechanism.Sensitivity analysis of the pertinent physical parameters reveals that the Prandtl number has the most significant impact on blood flow dynamics.A statistical analysis of the present results and existing literature has also been included in the study.Overall,this research contributes to advancing our understanding of vascular health and lays the groundwork for innovative approaches in stenosis treatment and related biomedical fields. 展开更多
关键词 Blood flow simulation STENOSIS copper and alumina nanoparticles thermal radiation curvature parameter
下载PDF
Novel Low-Carbon Optimal Operation Method for Flexible Distribution Network Based on Carbon Emission Flow
13
作者 Chao Gao Kai Niu +3 位作者 Wenjing Chen Changwei Wang Yabin Chen Rui Qu 《Energy Engineering》 2025年第2期785-803,共19页
With the widespread implementation of distributed generation(DG)and the integration of soft open point(SOP)into the distribution network(DN),the latter is steadily transitioning into a flexible distribution network(FD... With the widespread implementation of distributed generation(DG)and the integration of soft open point(SOP)into the distribution network(DN),the latter is steadily transitioning into a flexible distribution network(FDN),the calculation of carbon flow distribution in FDN is more difficult.To this end,this study constructs a model for low-carbon optimal operations within the FDN on the basis of enhanced carbon emission flow(CEF).First,the carbon emission characteristics of FDNs are scrutinized and an improved method for calculating carbon flow within these networks is proposed.Subsequently,a model for optimizing low-carbon operations within FDNs is formulated based on the refined CEF,which merges the specificities of DG and intelligent SOP.Finally,this model is scrutinized using an upgraded IEEE 33-node distribution system,a comparative analysis of the cases reveals that when DG and SOP are operated in a coordinated manner in the FDN,with the cost of electricity generation was reduced by 40.63 percent and the cost of carbon emissions by 10.18 percent.The findings indicate that the judicious optimization of areas exhibiting higher carbon flow rates can effectively enhance the economic efficiency of DN operations and curtail the carbon emissions of the overall network. 展开更多
关键词 Flexible distribution network carbon emission flow distributed generation soft open points
下载PDF
Plastic flow and interfacial bonding behaviors of embedded linear friction welding process:Numerical simulation combined with thermophysical experiment
14
作者 Tiejun MA Zhenguo GUO +6 位作者 Xiawei YANG Junlong JIN Xi CHEN Jun TAO Wenya LI Achilles VAIRIS Liukuan YU 《Chinese Journal of Aeronautics》 2025年第1期87-98,共12页
In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components ... In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components in aircraft.The interfacial plastic flow behavior and bonding mechanism of this process were investigated by a developed coupling EulerianLagrangian numerical model using software ABAQUS and a novel thermo-physical simulation method with designed embedded hot compression specimen.In addition,the formation mechanism and control method of welding defects caused by uneven plastic flow were discussed.The results reveal that the plastic flow along oscillating direction of this process is even and sufficient.In the direction perpendicular to oscillation,thermo-plastic metals mainly flow downward along welding interface under coupling of shear stress and interfacial pressure,resulting in the interfacial plastic zone shown as an inverted“V”shape.The upward plastic flow in this direction is relatively weak,and only a small amount of flash is extruded from top of joint.Moreover,the wedge block and welding components at top of joint are always in un-steady friction stage,leading to nonuniform temperature field distribution and un-welded defects.According to the results of numerical simulation,high oscillating frequency combined with low pressure and small amplitude is considered as appropriate parameter selection scheme to improve the upward interfacial plastic flow at top of joint and suppress the un-welded defects.The results of thermo-physical simulation illustrate that continuous dynamic recrystallization(CDRX)induces the bonding of interface,accompanying by intense dislocation movement and creation of many low-angle grain boundaries.In the interfacial bonding area,grain orientation is random with relatively low texture density(5.0 mud)owing to CDRX. 展开更多
关键词 Embedded linear friction welding Plastic flow Interfacial bonding behavior Numerical simulation Thermo-physical simulation Temperature field Dynamic recrystallization
原文传递
Emergence as a process of resources flowing in supply chain system 被引量:1
15
作者 白世贞 郑小京 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期302-308,共7页
To accurately describe the resource values that agents possess in the complex supply chain system which is a result of the interaction among the agents and to make correct decisions regarding quantity, time and place ... To accurately describe the resource values that agents possess in the complex supply chain system which is a result of the interaction among the agents and to make correct decisions regarding quantity, time and place of the resources, the characteristics of the resource values in the supply chain are analyzed. "Chromosome" is used to express a resource value in the supply chain, and eight random numbers are used to integrate the resources. The if-then rules and correlation chance constrained programming in the resource supply-distribution model are set up and they are used in a three-tiered-echo model which can describe the kinds of interactive behavior of the agents in the supply chain system. Simulation is done in the platform of Swarm with a genetic algorithm. The results show that the resources in the supply chain complex adaptive system are an organic whole that cannot be separated. The three-tiered-echo model can accurately describe the interaction of resource flows of agents in the supply chain system. The system can attain optimization by utilizing the resources in the supply chain if the agents in the system cooperate, compete and distribute resources according to this model. 展开更多
关键词 resources flow AGENT SIMULATION
下载PDF
Preparation of Nitrogen-Doped Carbon Catalyst to Oxygen Reduction Reaction and Influence of Protective Gas Flowing on Its Activity
16
作者 熊中平 司玉军 +2 位作者 余鸿 李敏娇 陈茂学 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第2期255-259,I0002,共6页
A non-precious metal catalyst MnHMTA/C to oxygen reduction reaction was prepared by py- rolyzing a precursor from manganese chloride, hexamethylenetetramine and acetylene black in nitrogen gas atmosphere. The effect o... A non-precious metal catalyst MnHMTA/C to oxygen reduction reaction was prepared by py- rolyzing a precursor from manganese chloride, hexamethylenetetramine and acetylene black in nitrogen gas atmosphere. The effect of heat treatment temperature and flowing of nitrogen gas were investigated. A catalyst with the highest activity can be obtained at 700 ℃. Mn(Ⅱ) ion was changed to MnO in heat treatment, which improved the catalytic activity of the catalyst. Hexamethylenetetramine takes part in the formation of active site of the catalyst as its decomposed gases. The flowing of protective gas takes the decomposed gases out of the tube furnace and brings negative effect on the catalytic activity of the MnHMTA/C catalyst. 展开更多
关键词 Oxygen reduction reaction Non-precious metal catalyst MANGANESE Protective gas flowing
下载PDF
4D-Flow MRI在肥厚型心肌病左室流出道血流评估中的价值探索 被引量:1
17
作者 徐晶 陈秀玉 +3 位作者 尹刚 闫伟鹏 陆敏杰 赵世华 《磁共振成像》 CAS CSCD 北大核心 2024年第3期56-61,共6页
目的 探索四维血流(four-dimensional flow,4D-Flow)磁共振成像(magnetic resonance imaging,MRI)技术在左心室腔内应用的可行性。材料与方法 本研究为前瞻性、横断面研究,纳入2022年8月至2023年1月于我院接受心脏MRI检查的21例肥厚型... 目的 探索四维血流(four-dimensional flow,4D-Flow)磁共振成像(magnetic resonance imaging,MRI)技术在左心室腔内应用的可行性。材料与方法 本研究为前瞻性、横断面研究,纳入2022年8月至2023年1月于我院接受心脏MRI检查的21例肥厚型心肌病患者,采用3.0 T MRI扫描仪进行二维血流(tow-dimensional flow,2D-Flow)及4D-Flow成像,收集患者一周内进行的超声心动图检查结果。采用组内相关系数(inter-class correlation coefficient,ICC)、变异系数(coefficients of variation,COV)及Bland-Altman分析比较2D-Flow、4D-Flow评估左室流出道峰值流速的可重复性及一致性,并通过Pearson相关性分析探究二者与超声心动图测量结果的关系。结果 2D-Flow和4D-Flow观察者内/观察者间的ICC分别为0.999/0.999和0.995/0.992,COV分别为0.5%/0.5%和2.4%/2.6%。4D-Flow与超声心动图的测量结果呈中度相关,相关系数r值为0.574(P=0.006),但一致性较差,ICC为0.375(P=0.013)。2D-Flow与4D-Flow和超声心动图间无显著的一致性及相关性。结论 4D-Flow技术能够可视化心腔内血流模式,对左室流出道峰值流速的测量具有高度可重复性,且与超声心动图的测量结果具有显著的一致性。 展开更多
关键词 肥厚型心肌病 四维血流 二维血流 心脏磁共振 磁共振成像
下载PDF
FEM analysis of metal flowing behaviors in porthole die extrusion based on the mesh reconstruction technology of the welding process 被引量:6
18
作者 Dong-nan Huang Zhi-hao Zhang +1 位作者 Jing-yuan Li Jian-xin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第6期763-769,共7页
A reconstruction technology of finite element meshes based on reversal engineering was applied to solve mesh penetration and separation in the finite element simulation for the divergent extrusion. The 3D numerical si... A reconstruction technology of finite element meshes based on reversal engineering was applied to solve mesh penetration and separation in the finite element simulation for the divergent extrusion. The 3D numerical simulation of the divergent extrusion process in- cluding the welding stage for complicated hollow sections was conducted. Based on the analysis of flowing behaviors, the flowing velocities of the alloy in portholes and near the welding planes were properly controlled through optimizing the expansion angle as well as porthole ar- eas and positions. After the die structure optimization, defects such as warp, wrist, and the wavelike are eliminated, which improves the sec- tion-forming quality. Meanwhile, the temperature distribution in the cross section is uniform. Especially, the temperature of the C-shape notch with a larger thickness is lower than that of other regions in the cross section, which is beneficial for balancing the alloy flowing velocity. 展开更多
关键词 numerical simulation EXTRUSION metal forming metal flow RECONSTRUCTION
下载PDF
针对无线控制环境的OpenFlow流表申请优化机制
19
作者 文军 丁锐 李默嘉 《通信技术》 2024年第9期911-916,共6页
在无线控制环境下,受限于控制通道的带宽和时延,OpenFlow交换机通过Packet-In消息申请流表的过程耗时较长,这个时段内交换机可能收到同一条流的大量后续报文,并分别产生与首包报文完全相同的Packet-In消息发往控制器,明显浪费网络资源... 在无线控制环境下,受限于控制通道的带宽和时延,OpenFlow交换机通过Packet-In消息申请流表的过程耗时较长,这个时段内交换机可能收到同一条流的大量后续报文,并分别产生与首包报文完全相同的Packet-In消息发往控制器,明显浪费网络资源。同时,针对每条流独立发送一个Packet-In报文的方式容易导致控制通道负载以小包为主、包头开销占比过大、网络资源利用率不高的问题。因此,针对无线控制条件下报文粒度Packet-In消息触发和离散化Packet-In消息发送机制存在的问题,提出了一种基于流粒度实现Packet-In消息触发和Packet-In消息聚合发送的方案,并通过仿真试验,验证了方案的效果。 展开更多
关键词 Openflow Packet-In 流表申请 流粒度 消息聚合
下载PDF
iFlow彩色血流编码成像技术在下肢动脉硬化闭塞症诊断中的应用价值 被引量:1
20
作者 龙海灯 殷世武 +3 位作者 潘升权 项廷淼 宋均飞 王元 《实用医学杂志》 CAS 北大核心 2024年第18期2623-2628,共6页
目的研究iFlow彩色血流编码成像技术在下肢动脉硬化闭塞症(LEASO)诊断中的应用价值。方法选择2022年3月至2023年10月期间确诊的106例LEASO患者作为本研究的LEASO组,以一般资料与LEASO组匹配且无动脉病变的80例志愿者作为对照组。两组受... 目的研究iFlow彩色血流编码成像技术在下肢动脉硬化闭塞症(LEASO)诊断中的应用价值。方法选择2022年3月至2023年10月期间确诊的106例LEASO患者作为本研究的LEASO组,以一般资料与LEASO组匹配且无动脉病变的80例志愿者作为对照组。两组受试者均进行数字减影血管造影(DSA)并采用iFlow彩色血流编码成像技术检测股骨头区域和踝关节区域达峰时间(TTP)、计算踝关节区域与股骨头区域TTP的差值,测量踝肱指数(ABI)。结果两组研究对象年龄、性别、体质量指数、吸烟史、高血压病史、糖尿病史、冠心病史、股骨头区域TTP的比较,差异无统计学意义(P>0.05);LEASO组踝关节区域TTP及TTP差值均高于对照组,差异有统计学意义(P<0.05);LEASO组中不同Rutherford分类患者股骨头区域TTP的比较以及左侧病变患者与右侧病变患者股骨头区域TTP、踝关节区域TTP、TTP差值的比较,差异无统计学意义(P>0.05),Rutherford分类越高,踝关节区域TTP及TTP差值越低(P<0.05);经Pearson检验,LEASO患者的踝关节区域TTP、TTP差值与ABI呈负相关(P<0.05);经受试者工作特征(ROC)曲线分析,踝关节区域TTP、TTP差值对LEASO具有诊断效能;经Delong检验,TTP差值诊断的ROC曲线下面积高于踝关节区域TTP(P<0.05)。结论iFlow彩色血流编码成像技术测定踝关节区TTP及TTP差值是诊断LEASO的量化指标。 展开更多
关键词 下肢动脉硬化闭塞症 iflow彩色血流编码成像技术 达峰时间 踝关节
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部