High-quality standard oil synthetic zeolite-13(SSZ-13) membranes with thickness only ~ 1.0 μm were prepared on tubular supports by the new seeded-gel approach. Seeded-gel approach is simpler than the normal secondary...High-quality standard oil synthetic zeolite-13(SSZ-13) membranes with thickness only ~ 1.0 μm were prepared on tubular supports by the new seeded-gel approach. Seeded-gel approach is simpler than the normal secondary-growth one since adding seeds in the gel is simpler than seeding on the support surface. The synthesis time was greatly reduced from 3.0 to 1.0 d after synthesis modification of gel aging and seed sizes. Low temperature ozone calcination was used for the removal of the organic structural directing agent. The best SSZ-13 membrane displayed CO_(2)permeances of 1.3 × 10^(-6) and 1.5 × 10^(-6) mol·m^(-2)·s^(-1)·Pa^(-1) and CO_(2)/CH_(4) and CO_(2)/N_(2) selectivities of 125 and 27 for equimolar CO_(2)/CH_(4) and CO_(2)/N2mixtures at 0.2 MPa pressure drop and 298 K, respectively. Separation performance of the membrane in the two binary mixtures is higher than that of most zeolite membranes. Three SSZ-13 membranes were reproducibly prepared on tubular supports by seeded-gel approach and the standard deviation ratios of CO_(2) permeance and CO_(2)/CH_(4) selectivity are 12.5% and 7%, respectively. It suggests that this new synthesis approach is creditable. The effects of temperature and pressure on separation performance of the thin SSZ-13 membranes were studied in the two binary mixtures. The tubular SSZ-13 membranes displayed great potentials for CO_(2) capture from natural gas, biogas and flue gas.展开更多
The Cu-exchanged SSZ-13 with the small-pore chabazite framework is considered as a highly efficient catalyst for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR).In order to further improve the catalytic pr...The Cu-exchanged SSZ-13 with the small-pore chabazite framework is considered as a highly efficient catalyst for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR).In order to further improve the catalytic property,a series of Mn ion-assisted Cu/SSZ-13 powder catalysts were prepared by co-exchange method and stepwise exchange method.It is found that the NH_(3)-SCR activity,N_(2) selectivity,hydrothermal stability and sulfur resistance of Cu/SSZ-13 are promoted by introducing a minority of Mn(0.15%to 0.23%(mass))through co-exchange method.Characterization results reveal that the Cu,Mn co-exchange enables the higher amounts of Cu^(2+)active sites,the abundant medium strong and strong acid,the optimized ratio of Lewis acid to Brønsted acid etc.,which are required for a good NH_(3)-SCR catalytic property over broad temperature range and under harsh working environment.Moreover,a monolithic catalyst was prepared by impregnating a cordierite ceramic support into the coating slurry containing the optimized CuMn/SSZ-13 powder.The diesel engine bench tests show that Cu,Mn co-exchange gives the monolith catalyst a better catalytic property than commercial catalysts.This work provides an important guidance for the rational design of secondary-ion-assisted zeolites applied in NH_(3)-SCR.展开更多
The main disadvantage of microporous SSZ-13 catalyst used in the methanol to olefins(MTO) process is its rapid deactivation due to its relatively low coke resistance. Meanwhile, the hierarchical zeolites usually exhib...The main disadvantage of microporous SSZ-13 catalyst used in the methanol to olefins(MTO) process is its rapid deactivation due to its relatively low coke resistance. Meanwhile, the hierarchical zeolites usually exhibit improved catalytic stability thanks to their better mass transfer ability. Herein, the hierarchically nanoporous SSZ-13 zeolites were one-pot synthesized by using N,N,N-trimethyl-1-adamantanammonium hydroxide as a microporous structure directing agent and C_(18)H_(37) N^+(CH_3)_2 C_6H_(12) N^+(CH_3)_2 C_6 H_(13)(Br^-)_2(hereinafter abbreviated as C_(18-6-6) Br_2) as a mesoporogen. The hierarchically nanoporous SSZ-13 catalyst was characterized by XRD, N_2 physisorption, SEM, TEM, TG-DTG, ^(27) Al and ^(29) SiNMR spectroscopy and NH_3-TPD techniques. The results showed that the hierarchical SSZ-13 zeolite synthesized in the presence of the C_(18-6-6) Br_2 surfactant exhibits aggregates of primary nanocrystals and contains the well-developed mesopores and excellent acidity. Compared to its conventional counterpart, the hierarchical SSZ-13 zeolite has longer catalytic lifetime and higher selectivity for ethylene and propylene in the MTO reaction, which can be attributed to the synergistic effect of their good acidity and improved diffusion properties resulted from the hierarchical pore structure.展开更多
High-silica SSZ-13 zeolite membranes are promising in industrial separations of light gases and continuous membranes are highly demanded for better separation performances. Herein, pure-phase, continuous and thin SSZ-...High-silica SSZ-13 zeolite membranes are promising in industrial separations of light gases and continuous membranes are highly demanded for better separation performances. Herein, pure-phase, continuous and thin SSZ-13 zeolite membranes were synthesized using dual templates of N,N,N-trimethtyl-1-adamantammonium hydroxide(TMAdaOH) and tetraethylammonium hydroxide(TEAOH). Systematical investigations of TMAdaOH/TEAOH ratios and their concentrations show that TMAdaOH acts as the main structure-directing agent in the formation of the SSZ-13 zeolite. TMAdaOH cooperatively plays with TEAOH in promoting the SSZ-13 crystal intergrowth to form a continuous polycrystalline membrane. Additionally, appropriate introduction of TEAOH is able to adjust the membrane thickness to the crystal-comparable size of ca. 2.0 μm. The SSZ-13 membranes are further applied for N2/NO2separation, which is firstly reported on zeolite membranes. The gas permeation results show that the SSZ-13 membrane synthesized by the dual-template approach exhibits selective separation of N2 over NO2 with N2/NO2 separation factor of 7.6 and N2 permeance of 1.66×10-8 mol·m-2·s-1·Pa-1.展开更多
A series of Cu-SSZ-13 catalysts with the same Cu loading were prepared by different methods of incipient wetness impregnation [Cu-SSZ-13(IWI)], ion exchange[Cu-SSZ-13(IE)] and hydro-thermal synthesis [Cu-SSZ-13(HTS)]....A series of Cu-SSZ-13 catalysts with the same Cu loading were prepared by different methods of incipient wetness impregnation [Cu-SSZ-13(IWI)], ion exchange[Cu-SSZ-13(IE)] and hydro-thermal synthesis [Cu-SSZ-13(HTS)]. Their activity for selective catalytic reduction of nitrogen oxides(NO_x) with NH3 was determined. The results show that the Cu-SSZ-13(HTS) catalyst exhibits a better ammonia selective catalytic reduction(NH3-SCR)activity compared with the other two catalysts, over which more than 90% NO conversion is obtained at 215-600℃under the space velocity of 180,000 h^(-1). The characterization results reveal that the Cu-SSZ-13(HTS) catalyst possesses more amount of stable Cu^(2+) in the six-membered ring and high ability for NH3 and NO adsorption, leading to its high NH3-SCR activity, although this catalyst has low surface area. On the other hand, the activity of Cu-SSZ-13(IE) catalyst is almost the same as that of Cu-SSZ-13(IWI) catalyst at the temperature lower than 400 ℃, but the activity of the former is much higher than that of the latter at > 400 ℃ due to the high activity of Cu-SSZ-13(IWI) catalyst for NH3 oxidation.展开更多
基金Financial supports from the National Natural Science Foundation of China (21921006, 21938007 and 21576131)the open project of the State Key Laboratory of Materials-Oriented Chemical Engineering of China (KL21-04)。
文摘High-quality standard oil synthetic zeolite-13(SSZ-13) membranes with thickness only ~ 1.0 μm were prepared on tubular supports by the new seeded-gel approach. Seeded-gel approach is simpler than the normal secondary-growth one since adding seeds in the gel is simpler than seeding on the support surface. The synthesis time was greatly reduced from 3.0 to 1.0 d after synthesis modification of gel aging and seed sizes. Low temperature ozone calcination was used for the removal of the organic structural directing agent. The best SSZ-13 membrane displayed CO_(2)permeances of 1.3 × 10^(-6) and 1.5 × 10^(-6) mol·m^(-2)·s^(-1)·Pa^(-1) and CO_(2)/CH_(4) and CO_(2)/N_(2) selectivities of 125 and 27 for equimolar CO_(2)/CH_(4) and CO_(2)/N2mixtures at 0.2 MPa pressure drop and 298 K, respectively. Separation performance of the membrane in the two binary mixtures is higher than that of most zeolite membranes. Three SSZ-13 membranes were reproducibly prepared on tubular supports by seeded-gel approach and the standard deviation ratios of CO_(2) permeance and CO_(2)/CH_(4) selectivity are 12.5% and 7%, respectively. It suggests that this new synthesis approach is creditable. The effects of temperature and pressure on separation performance of the thin SSZ-13 membranes were studied in the two binary mixtures. The tubular SSZ-13 membranes displayed great potentials for CO_(2) capture from natural gas, biogas and flue gas.
基金supported by the National Natural Science Foundation of China (22278086)
文摘The Cu-exchanged SSZ-13 with the small-pore chabazite framework is considered as a highly efficient catalyst for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR).In order to further improve the catalytic property,a series of Mn ion-assisted Cu/SSZ-13 powder catalysts were prepared by co-exchange method and stepwise exchange method.It is found that the NH_(3)-SCR activity,N_(2) selectivity,hydrothermal stability and sulfur resistance of Cu/SSZ-13 are promoted by introducing a minority of Mn(0.15%to 0.23%(mass))through co-exchange method.Characterization results reveal that the Cu,Mn co-exchange enables the higher amounts of Cu^(2+)active sites,the abundant medium strong and strong acid,the optimized ratio of Lewis acid to Brønsted acid etc.,which are required for a good NH_(3)-SCR catalytic property over broad temperature range and under harsh working environment.Moreover,a monolithic catalyst was prepared by impregnating a cordierite ceramic support into the coating slurry containing the optimized CuMn/SSZ-13 powder.The diesel engine bench tests show that Cu,Mn co-exchange gives the monolith catalyst a better catalytic property than commercial catalysts.This work provides an important guidance for the rational design of secondary-ion-assisted zeolites applied in NH_(3)-SCR.
基金the National Natural Science Foundation of China(No.51371123)the Natural Science Foundation of Shanxi Province(No.201701D121024)the Research Project Supported by Shanxi Scholarship Council of China(No.2017-042)for providing financial support for this study
文摘The main disadvantage of microporous SSZ-13 catalyst used in the methanol to olefins(MTO) process is its rapid deactivation due to its relatively low coke resistance. Meanwhile, the hierarchical zeolites usually exhibit improved catalytic stability thanks to their better mass transfer ability. Herein, the hierarchically nanoporous SSZ-13 zeolites were one-pot synthesized by using N,N,N-trimethyl-1-adamantanammonium hydroxide as a microporous structure directing agent and C_(18)H_(37) N^+(CH_3)_2 C_6H_(12) N^+(CH_3)_2 C_6 H_(13)(Br^-)_2(hereinafter abbreviated as C_(18-6-6) Br_2) as a mesoporogen. The hierarchically nanoporous SSZ-13 catalyst was characterized by XRD, N_2 physisorption, SEM, TEM, TG-DTG, ^(27) Al and ^(29) SiNMR spectroscopy and NH_3-TPD techniques. The results showed that the hierarchical SSZ-13 zeolite synthesized in the presence of the C_(18-6-6) Br_2 surfactant exhibits aggregates of primary nanocrystals and contains the well-developed mesopores and excellent acidity. Compared to its conventional counterpart, the hierarchical SSZ-13 zeolite has longer catalytic lifetime and higher selectivity for ethylene and propylene in the MTO reaction, which can be attributed to the synergistic effect of their good acidity and improved diffusion properties resulted from the hierarchical pore structure.
基金This work was supported by the National Natural Science Foundation of China(Nos.21808012,21971035)the"111"Project of China(No.B18012)the Open Project of the National Defense Science and Technology Industry Nuclear Power Technology Innovation Center of China(No.HDLCXZX-2020-HD-005).
文摘High-silica SSZ-13 zeolite membranes are promising in industrial separations of light gases and continuous membranes are highly demanded for better separation performances. Herein, pure-phase, continuous and thin SSZ-13 zeolite membranes were synthesized using dual templates of N,N,N-trimethtyl-1-adamantammonium hydroxide(TMAdaOH) and tetraethylammonium hydroxide(TEAOH). Systematical investigations of TMAdaOH/TEAOH ratios and their concentrations show that TMAdaOH acts as the main structure-directing agent in the formation of the SSZ-13 zeolite. TMAdaOH cooperatively plays with TEAOH in promoting the SSZ-13 crystal intergrowth to form a continuous polycrystalline membrane. Additionally, appropriate introduction of TEAOH is able to adjust the membrane thickness to the crystal-comparable size of ca. 2.0 μm. The SSZ-13 membranes are further applied for N2/NO2separation, which is firstly reported on zeolite membranes. The gas permeation results show that the SSZ-13 membrane synthesized by the dual-template approach exhibits selective separation of N2 over NO2 with N2/NO2 separation factor of 7.6 and N2 permeance of 1.66×10-8 mol·m-2·s-1·Pa-1.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFC0204300)the National Natural Science Foundation of China (Nos. 21577034 and 21333003)the Science and Technology Commission of Shanghai Municipality (No. 16ZR1407900)
文摘A series of Cu-SSZ-13 catalysts with the same Cu loading were prepared by different methods of incipient wetness impregnation [Cu-SSZ-13(IWI)], ion exchange[Cu-SSZ-13(IE)] and hydro-thermal synthesis [Cu-SSZ-13(HTS)]. Their activity for selective catalytic reduction of nitrogen oxides(NO_x) with NH3 was determined. The results show that the Cu-SSZ-13(HTS) catalyst exhibits a better ammonia selective catalytic reduction(NH3-SCR)activity compared with the other two catalysts, over which more than 90% NO conversion is obtained at 215-600℃under the space velocity of 180,000 h^(-1). The characterization results reveal that the Cu-SSZ-13(HTS) catalyst possesses more amount of stable Cu^(2+) in the six-membered ring and high ability for NH3 and NO adsorption, leading to its high NH3-SCR activity, although this catalyst has low surface area. On the other hand, the activity of Cu-SSZ-13(IE) catalyst is almost the same as that of Cu-SSZ-13(IWI) catalyst at the temperature lower than 400 ℃, but the activity of the former is much higher than that of the latter at > 400 ℃ due to the high activity of Cu-SSZ-13(IWI) catalyst for NH3 oxidation.