The dispersion behavior of MoO_3 on ZSM-11 and effect of dispersed MoO_3 on the fram ework structure of ZSM-11 have been studjed using X-ray diffraction and infrared spectroscopy
Aluminosilicate small pore zeolites belonging to ABC-6 family play crucially important roles in the high methanol conversion with the high selectivity of light olefins,gas separation and storage,and selective catalyti...Aluminosilicate small pore zeolites belonging to ABC-6 family play crucially important roles in the high methanol conversion with the high selectivity of light olefins,gas separation and storage,and selective catalytic reduction of NO_(x).In this work,we report a general method,called the epitaxial growth approach,for designing ABC-6 family small pore zeolites.It is mainly realized through the epitaxial growth on the nonporous SOD-type zeolite in the presence of inorganic cations(Na^(+)and K^(+))combined with a variety of organic structure directing agents(OSDAs).In this case,a series of ABC-6 family small pore zeolites such as ERI-,SWY-,LEV-,AFX-,and PTT-type zeolites have been successfully synthesized within a few hours.More importantly,the advanced focused ion beam(FIB)and the low-dose high-resolution transmission electron microscopy(HRTEM)imaging technique have been utilized for unraveling the zeolite heterojunction at the atomic level during the epitaxial growth process.It turns out(222)crystallographic planes of the SOD-type zeolite substrate provide unique pre-building units,which facilitate the growth of targeted ABC-6 family small pore zeolites along its c-axis.Moreover,the morphologies of ERI-type zeolite can also be tuned through the epitaxial growth approach,achieving a longer lifetime in the methanol conversion.展开更多
Though zeolites have been successfully synthesized for several decades,the roles of templates for zeolite synthesis are still not fully understood yet.Currently,many types of templates have been employed such as inorg...Though zeolites have been successfully synthesized for several decades,the roles of templates for zeolite synthesis are still not fully understood yet.Currently,many types of templates have been employed such as inorganic alkali metal ions,organic quaternary ammonium cations,organic amines,organic quaternary phosphonium cations,metal complexes and zeolite seeds,and the roles are mainly summarized into three aspects:structure-directing,space-filling and charge-balancing.In order to synthesize zeolites efficiently,the proposed principles to guide zeolite synthesis are the stabilization of energy between templates and zeolite framework,charge density mis-matching(CDM)and structure matching between zeolite frameworks and templates.The purpose of this review is to briefly summarize the progresses in recent years,clearly showing the roles of the templates for zeolite synthesis.展开更多
Traditional processes for treating vanadium slag generate a huge volume of solid residue and a large amount of harmful gas,which cause serious environmental problems.In this study,a new process for the comprehensive u...Traditional processes for treating vanadium slag generate a huge volume of solid residue and a large amount of harmful gas,which cause serious environmental problems.In this study,a new process for the comprehensive utilization of vanadium slag was proposed,wherein zeolite A and a V2O5/TiO2 system were synthesized.The structural properties of the as-synthesized zeolite A and the V2O5/TiO2system were characterized using various experimental techniques,including X-ray diffraction,X-ray fluorescence,scanning electron microscopy,and infrared spectroscopy.The results reveal that zeolite A and the V2O5/TiO2 system are successfully obtained with high purity.The results of gas adsorption measurements indicate that the prepared zeolite A exhibits high selectivity for CO2 over N2 and is a candidate material for CO2 capture from flue-gas streams.展开更多
In silico prediction of potential synthetic targets is the prerequisite for function-led discovery of new zeolites. Millions of hypothetical zeolitic structures have been predicted via various computational methods, b...In silico prediction of potential synthetic targets is the prerequisite for function-led discovery of new zeolites. Millions of hypothetical zeolitic structures have been predicted via various computational methods, but most of them are experimentally inaccessible under conventional synthetic conditions.Screening out unfeasible structures is crucial for the selection of synthetic targets with desired functions.The local interatomic distance(LID) criteria are a set of structure rules strictly obeyed by all existing zeolite framework types. Using these criteria, many unfeasible hypothetical structures have been detected. However, to calculate their LIDs, all hypothetical structures need to be fully optimized without symmetry constraints. When evaluating a large number of hypothetical structures, such calculations may become too computationally expensive due to the forbiddingly high degree of freedom. Here, we propose calculating LIDs among structures optimized with symmetry constraints and using them as new structure evaluation criteria, i.e., the LIDsymcriteria, to screen out unfeasible hypothetical structures. We find that the LIDsymcriteria can detect unfeasible structures as many as the original non-symmetric LID criteria do, yet require at least one order of magnitude less computation at the initial geometry optimization stage.展开更多
Generating hollow structure inside titanium silicalite-1(TS-1)is a widely used method to improve its liquid-phase oxidation catalytic performance in industry.However,traditional dissolution-recrystallization method us...Generating hollow structure inside titanium silicalite-1(TS-1)is a widely used method to improve its liquid-phase oxidation catalytic performance in industry.However,traditional dissolution-recrystallization method usually required a large amount of aqueous solution of organic template,leading to unfavorable polluted waste,low production efficiency,and high manufacture cost.Here,a facile and environmental friendly strategy was proposed for the post-synthesis of hollow TS-1 zeolite with a solventfree method utilizing NH4HCO3 and tetrapropylammounium bromide as selective etching agents,which reduced the usage of organic template and avoided the liquid waste.The high crystallinity,the microporous structure,and the active Ti sites were preserved at a high product yield(>93%).The formation mechanism of hollow structure was also investigated by exploring effects of different reactants and experimental parameters.Meanwhile,the obtained hollow TS-1 showed an outstanding performance in the epoxidation of 1-hexene in comparison to the parent zeolite.展开更多
Trimodal hierarchical yolk-shell materials consisting of TS-1 core and mesoporous carbon shell (YS-TS- I@MC) was successfully synthesized by using TS-l@mesosilica as hard template, sucrose as carbon source and organ...Trimodal hierarchical yolk-shell materials consisting of TS-1 core and mesoporous carbon shell (YS-TS- I@MC) was successfully synthesized by using TS-l@mesosilica as hard template, sucrose as carbon source and organic base tetrapropylammonium hydroxide (TPAOH) as silica etching agent. The resultant YS-TS-I@MC contains the micropores (0.51 nm) in TS-1 core, the mesopores (2.9 rim) in carbon shell as well as a void or a stack pore between TS-1 fragements (TS-1 intercrystal mesopores, -18.4 nm). Under the rigorous etching conditions, the crystalline structure of TS-1 core was well retained. The YS-TS- I@MC served as a good support for palladium nano-particles (Pd NPs) or Rh(OH)x species, giving rise to efficient bifunctional catalysts for the tandem reactions including one-pot synthesis of propylene oxide or amides.展开更多
文摘The dispersion behavior of MoO_3 on ZSM-11 and effect of dispersed MoO_3 on the fram ework structure of ZSM-11 have been studjed using X-ray diffraction and infrared spectroscopy
基金supported by National Key Research and Development Project of China(No.2022YFE0113800)National Natural Science Foundation of China(Nos.22288101,21972136,21991090 and 21991091)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDB-SSW-JSC040)。
文摘Aluminosilicate small pore zeolites belonging to ABC-6 family play crucially important roles in the high methanol conversion with the high selectivity of light olefins,gas separation and storage,and selective catalytic reduction of NO_(x).In this work,we report a general method,called the epitaxial growth approach,for designing ABC-6 family small pore zeolites.It is mainly realized through the epitaxial growth on the nonporous SOD-type zeolite in the presence of inorganic cations(Na^(+)and K^(+))combined with a variety of organic structure directing agents(OSDAs).In this case,a series of ABC-6 family small pore zeolites such as ERI-,SWY-,LEV-,AFX-,and PTT-type zeolites have been successfully synthesized within a few hours.More importantly,the advanced focused ion beam(FIB)and the low-dose high-resolution transmission electron microscopy(HRTEM)imaging technique have been utilized for unraveling the zeolite heterojunction at the atomic level during the epitaxial growth process.It turns out(222)crystallographic planes of the SOD-type zeolite substrate provide unique pre-building units,which facilitate the growth of targeted ABC-6 family small pore zeolites along its c-axis.Moreover,the morphologies of ERI-type zeolite can also be tuned through the epitaxial growth approach,achieving a longer lifetime in the methanol conversion.
基金supported by National Key Research and Development Program of China(2022YFA1503602)Key Research and Development Program of Zhejiang Province(2021C01080)National Natural Science Foundation of China(22125204).
文摘Though zeolites have been successfully synthesized for several decades,the roles of templates for zeolite synthesis are still not fully understood yet.Currently,many types of templates have been employed such as inorganic alkali metal ions,organic quaternary ammonium cations,organic amines,organic quaternary phosphonium cations,metal complexes and zeolite seeds,and the roles are mainly summarized into three aspects:structure-directing,space-filling and charge-balancing.In order to synthesize zeolites efficiently,the proposed principles to guide zeolite synthesis are the stabilization of energy between templates and zeolite framework,charge density mis-matching(CDM)and structure matching between zeolite frameworks and templates.The purpose of this review is to briefly summarize the progresses in recent years,clearly showing the roles of the templates for zeolite synthesis.
基金supported by the Natural Science Foundation of China (Nos. 51406029 and 51474067)the Key Laboratory Project of Liaoning Province of Education (No.LZ2015032)
文摘Traditional processes for treating vanadium slag generate a huge volume of solid residue and a large amount of harmful gas,which cause serious environmental problems.In this study,a new process for the comprehensive utilization of vanadium slag was proposed,wherein zeolite A and a V2O5/TiO2 system were synthesized.The structural properties of the as-synthesized zeolite A and the V2O5/TiO2system were characterized using various experimental techniques,including X-ray diffraction,X-ray fluorescence,scanning electron microscopy,and infrared spectroscopy.The results reveal that zeolite A and the V2O5/TiO2 system are successfully obtained with high purity.The results of gas adsorption measurements indicate that the prepared zeolite A exhibits high selectivity for CO2 over N2 and is a candidate material for CO2 capture from flue-gas streams.
基金supported by the National Natural Science Foundation of China(Nos.21622102,21621001 and 21320102001)the National Key Research and Development Program of China(No.2016YFB0701100)
文摘In silico prediction of potential synthetic targets is the prerequisite for function-led discovery of new zeolites. Millions of hypothetical zeolitic structures have been predicted via various computational methods, but most of them are experimentally inaccessible under conventional synthetic conditions.Screening out unfeasible structures is crucial for the selection of synthetic targets with desired functions.The local interatomic distance(LID) criteria are a set of structure rules strictly obeyed by all existing zeolite framework types. Using these criteria, many unfeasible hypothetical structures have been detected. However, to calculate their LIDs, all hypothetical structures need to be fully optimized without symmetry constraints. When evaluating a large number of hypothetical structures, such calculations may become too computationally expensive due to the forbiddingly high degree of freedom. Here, we propose calculating LIDs among structures optimized with symmetry constraints and using them as new structure evaluation criteria, i.e., the LIDsymcriteria, to screen out unfeasible hypothetical structures. We find that the LIDsymcriteria can detect unfeasible structures as many as the original non-symmetric LID criteria do, yet require at least one order of magnitude less computation at the initial geometry optimization stage.
基金This work was supported by the National Natural Science Foundation of China(Nos.21875140,21835002,21522105,and 51861145313)the Shanghai Science and Technology Plan(No.21DZ2260400)+4 种基金the China Ministry of Science and Technology(No.2021YFA1501401)The authors thank the support from Analytical Instrumentation Center(No.SPSTAIC10112914)SPST,ShanghaiTech UniversityThe authors also thank Prof.Osamu Terasaki and CħEM SPST,ShanghaiTech University(No.EM02161943)for scientific and characterization support.Y.F.thanks Junyan Li(Jilin University)for his assistance in 3D tomographic data collection.
文摘Generating hollow structure inside titanium silicalite-1(TS-1)is a widely used method to improve its liquid-phase oxidation catalytic performance in industry.However,traditional dissolution-recrystallization method usually required a large amount of aqueous solution of organic template,leading to unfavorable polluted waste,low production efficiency,and high manufacture cost.Here,a facile and environmental friendly strategy was proposed for the post-synthesis of hollow TS-1 zeolite with a solventfree method utilizing NH4HCO3 and tetrapropylammounium bromide as selective etching agents,which reduced the usage of organic template and avoided the liquid waste.The high crystallinity,the microporous structure,and the active Ti sites were preserved at a high product yield(>93%).The formation mechanism of hollow structure was also investigated by exploring effects of different reactants and experimental parameters.Meanwhile,the obtained hollow TS-1 showed an outstanding performance in the epoxidation of 1-hexene in comparison to the parent zeolite.
基金the National Natural Science Foundation of China(No.21273076,U1162102)the National Key Technology R&D Program(No.2012BAE05B02)+1 种基金Ph.D Programs Foundation of Ministry of Education(No.2012007613000)the Shanghai Leading Academic Discipline Project(B409)
文摘Trimodal hierarchical yolk-shell materials consisting of TS-1 core and mesoporous carbon shell (YS-TS- I@MC) was successfully synthesized by using TS-l@mesosilica as hard template, sucrose as carbon source and organic base tetrapropylammonium hydroxide (TPAOH) as silica etching agent. The resultant YS-TS-I@MC contains the micropores (0.51 nm) in TS-1 core, the mesopores (2.9 rim) in carbon shell as well as a void or a stack pore between TS-1 fragements (TS-1 intercrystal mesopores, -18.4 nm). Under the rigorous etching conditions, the crystalline structure of TS-1 core was well retained. The YS-TS- I@MC served as a good support for palladium nano-particles (Pd NPs) or Rh(OH)x species, giving rise to efficient bifunctional catalysts for the tandem reactions including one-pot synthesis of propylene oxide or amides.