Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysi...Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysis,sensing,electrochemistry,and a great number of emerging purposes.As a classic MOF,zeolitic imidazolate framework-8(ZIF-8)is conventionally one of the very few MOF members that has been commercialized with considerable production.展开更多
Zeolitic imidazolate frameworks(ZIFs)as smart drug delivery systems with microenvironment-triggered release have attracted much attention for tumor therapy.However,the exploration of ZIFs in biomedicine still encounte...Zeolitic imidazolate frameworks(ZIFs)as smart drug delivery systems with microenvironment-triggered release have attracted much attention for tumor therapy.However,the exploration of ZIFs in biomedicine still encounters many issues,such as inconvenient surface modification,fast drug release during blood circulation,undesired damage to major organs,and severe in vivo toxicity.To address the above issues,we developed an Mn-ZIF-90 nanosystem functionalized with an originally designed active-targeting and pH-responsive magnetic resonance imaging(MRI)Y1 receptor ligand[Asn28,Pro30,Trp32]-NPY(25-36)for imaging-guided tumor therapy.After Y1 receptor ligand modification,the Mn-ZIF-90 nanosystem exhibited high drug loading,better blood circulation stability,and dual breast cancer cell membrane and mitochondria targetability,further favoring specific microenvironment-triggered tumor therapy.Meanwhile,this nanosystem showed promising T1-weighted magnetic resonance imaging contrast in vivo in the tumor sites.Especially,this nanosystem with fast clean-up had almost no obvious toxicity and no damage occurred to the major organs in mice.Therefore,this nanosystem shows potential for use in imaging-guided tumor therapy.展开更多
Although zeolitic imidazolate frameworks(ZIFs)have bright prospects in wide fields like gas storage/separation,catalysis and medicine,etc.,their large-scale applications are bottlenecked by the absence of their low-co...Although zeolitic imidazolate frameworks(ZIFs)have bright prospects in wide fields like gas storage/separation,catalysis and medicine,etc.,their large-scale applications are bottlenecked by the absence of their low-cost commercial production technique.Here,we report an uncon ventional method suitable for environmentally friendly and low-cost mass-production of ZIFs.In this method,taking the synthesis of ZIF-8 as an example,ZnO was used instead of Zn(NO_(3))_(2) in traditional solvent synthesis methods and CO_(2) was introduced to dissolve ZnO in aqueous solution of 2-methylimidazole(HMeim)and form water soluble salt([ZnMeim]^(+)[MeimCOO]^(-))at room temperature.Then,by removing CO_(2) through heating or vacuuming,Meim-ions are produced and instantaneously assemble with[ZnMeim]^(+)s to generate ZIF-8 without any by product.Due to the absence of strong acid anions(such as NO^(-)_(3) and Cl^(-) et al.)in solution,the washing of filter cake required in the conventional approaches could be omitted and the filtrate containing only water and HMeim could be reused completely.This method is really green as no waste gas or liquid generates because CO_(2) and water could be recycled perfectly.It overcomes almost all bottlenecks occurred in commercial production of ZIF-8 when using traditional methods.A pilot plant was established for mass-production of ZIF-8 and hundreds kilograms of ZIF-8 was produced,which indicates that the new method is not only environmentally friendly but also low cost and commercial accessibility.It is expected that the new method would open an avenue for commercial applications of ZIFs.展开更多
As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting t...As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting the mechanical strains and alleviating phase degradation upon cycling.Hereinafter,we propose a strategy using a zeolitic imidazolate framework(ZIF)as the self-sacrificing template to directionally prepare a series of LiNi_(0.1)Co_(0.9)O_(2)(LNCO)with tailorable electrochemical properties.The rational selection of sintering temperature imparts the superiority of the resultant products in lithium storage,during which the sample prepared at 700℃(LNCO-700)outperforms its counterparts in cyclability(156.8 mA h g^(-1)at 1 C for 200 cycles in half cells,1 C=275 mA g^(-1))and rate capability due to the expedited ion/electron transport and the strengthen mechanical robustness.The feasibility of proper Ni doping is also divulged by half/full cell tests and theoretical study,during which LNCO-700(167 mA h g^(-1)at 1 C for 100 cycles in full cells)surpasses LCO-700 in battery performance due to the mitigated phase deterioration,stabilized layered structu re,ameliorated electro nic co nductivity,a nd exalted lithium sto rage activity.This work systematically unveils tailorable electrochemical behaviors of LNCO to better direct their practical application.展开更多
A novel ZIF-8-CMC hybrid material was fabricated from the hybridization of ZIF-8 and carboxymethylcellulose(CMC) by impregnation method for n-hexane/3-methylpentane separation.The surface properties of ZIF-8 were tail...A novel ZIF-8-CMC hybrid material was fabricated from the hybridization of ZIF-8 and carboxymethylcellulose(CMC) by impregnation method for n-hexane/3-methylpentane separation.The surface properties of ZIF-8 were tailored by introducing CMC into ZIF-8 nanoparticles.In this work,adsorption separation of n-hexane(nHEX) and 3-methylpentane(3 MP) on ZIF-8-CMC were investigated by batch vapor-phase adsorption and liquid-phase breakthrough adsorption.The adsorption selectivity of nHEX/3 MP reversed from preferable adsorption of nHEX to preferable adsorption of 3 MP upon the increasing of CMC containing in the hybrid materials.As the temperature increases,the adsorption amounts of nHEX and 3 MP decrease.With the increasing of CMC contents,the nHEX uptake decreased,the uptake capacity of 3 MP increased gradually.For liquid-phase breakthrough adsorption,the dynamic adsorption capacity of nHEX also decreased with the increasing of temperature.展开更多
Urothermal method was firstly used to synthesize zeolitic tetrazolate-imidazolate frameworks. By using 2-imidazolidone hemihydrate(e-urea) as solvent, a new compound, namely ZTIF-17 with GIS topology, has been obtaine...Urothermal method was firstly used to synthesize zeolitic tetrazolate-imidazolate frameworks. By using 2-imidazolidone hemihydrate(e-urea) as solvent, a new compound, namely ZTIF-17 with GIS topology, has been obtained by mixing 5,6-dimethylbenzimidazole and 5-ethylthiotrazole ligands, and characterized by powder and single-crystal X-ray diffraction, and thermogravimetric(TG) analyses. In addition, ZTIF-17 exhibited strong photoluminescence at room temperature. The result suggests that urothermal method is powerful to construct new kind of porous materials.展开更多
The adsorption and separation of diols from dilute aqueous solution using hydrophobic materials is very challenging due to the strong diol-water hydrogen-bonding interactions. Herein, we screened hydrophobic zeolitic ...The adsorption and separation of diols from dilute aqueous solution using hydrophobic materials is very challenging due to the strong diol-water hydrogen-bonding interactions. Herein, we screened hydrophobic zeolitic imidazolate frameworks(ZIFs) with chabazite(CHA) topology for separation of 2,3-butanediol(2,3-BDO) and 1,3-propanediol(1,3-PDO), which had junctional and hydrophobic traps matching the two end methyl groups of the 2,3-BDO molecule. Based on CHA-ZIFs with the same small-sized ligand 2-methylimidazole(mIm) and different large-sized ligand benzimidazole derivatives(RbIm),CHA-ZIFs with larger surface areas were obtained by the addition of excess small-sized ligand mIm in the synthesis process. We showed that all of the hydrophobic CHA-ZIFs preferentially adsorbed 2,3-BDO over 1,3-PDO by static batch adsorption and dynamic column adsorption experiments. But ZIF-301 and ZIF-300 with halogen groups exhibited better adsorptive separation performance for 2,3-BDO/1,3-PDO than ZIF-302 with methyl groups. For a typical ZIF-301, its adsorption capacity for 2,3-BDO was 116.4 mg·g^(-1)and selectivity for 2,3-BDO/1,3-PDO was 3.8 in dynamic column adsorption of the binary-component system(2,3-BDO/1,3-PDO: 50 g·L^(-1)/50 g·L^(-1)). Computational simulations revealed that 2,3-BDO preferentially adsorbed in a trap at the junction between the cha and d6r cages of CHA-ZIFs,meaning the strong host-guest interactions. Therefore, the hydrophobic CHA-ZIFs with a junctional trap were promising candidate materials for adsorbing 2,3-BDO, which also provided a new perspective for separating diols in dilute aqueous solutions.展开更多
Lithium metal attracts growing attention as an ideal anode candidate for next generation lithium battery systems owing to its high capacity,low density,and low working potential.However,the volume expansion of the bul...Lithium metal attracts growing attention as an ideal anode candidate for next generation lithium battery systems owing to its high capacity,low density,and low working potential.However,the volume expansion of the bulk and dendrite growth on the surface of lithium anode limits its practical application.Herein,we fabricate a composite lithium host featuring both multiple scaled structure and lithiophilic property to address obstacles at both aspects of bulk and surface simultaneously.In which,the multiple scaled structure provides void space to accommodate lithium volume change while zinc and cobalt oxides sites derived from Zeolitic Imidazolate Frameworks can react with lithium and form a stable solid electrolyte interphase,leading to a stable cycling of lithium symmetrical cell for more than 500 cycles with voltage hysteresis of only 88 mV at 2 mAcm^-2 and 5 mAh cm^-2.Moreover,full cells paired with LiFePO4 cathode can realize 500 cycles with 99.2%capacity retention,showing great potential for practical applications.The excellent electrochemical performance of the composite lithium anode proves the effectiveness of our anode design with multiple scaled structure and lithiophilic feature,which can be also expanded to other metal anodes for batteries.展开更多
Recently, the development of high-performance bifunctional oxygen catalysts integrated with flexible conductive scaffolds f or rechargeable metal-air batteries has attracted considerable interest, driving by fastgrowi...Recently, the development of high-performance bifunctional oxygen catalysts integrated with flexible conductive scaffolds f or rechargeable metal-air batteries has attracted considerable interest, driving by fastgrowing wearable electronics. Herein, we report a flexible bifunctional oxygen catalyst thin film consisting of Co–N–C bifunctional catalysts embedding in carbon nanotube(CNT) networks. The catalyst is readily prepared by pyrolysis of cobalt-based zeolitic imidazolate frameworks(ZIF-67) that are in-situ synthesized in CNT networks. Such catalyst film demonstrates very high catalytic activities for oxygen reduction(onset potential: 0.91 V, and half-wave potential: 0.87 V vs. RHE) and oxygen evolution(10 m Acm^-2 at 1.58 V) reactions, high methanol tolerance property, and long-term stability(97% current retention). Moreover, our integrated catalyst film shows very good structure flexibility and robustness. Based on the obtained film air electrodes, flexible Zn–air batteries demonstrate low charging and discharging overpotentials(0.82 V at 1 m A cm^-1) and excellent structure stability in the bending tests. These results indicate that presently reported catalyst films are potential air electrodes for flexible metal–air batteries.展开更多
Metal organic frameworks(MOFs) have been considered as compelling precursor for miscellaneous applications. However, their unsatisfied electrocatalytic performance limits their direct application as electrocatalyst. H...Metal organic frameworks(MOFs) have been considered as compelling precursor for miscellaneous applications. However, their unsatisfied electrocatalytic performance limits their direct application as electrocatalyst. Herein, by incorporating the cobalt-oxide bonds and polyaniline(PANI) with two-dimension zeolitic imidazolate frameworks(ZIFs), a novel bifunctional catalyst(Co-O-ZIF/PANI) for Zn-air battery was designed based on a facile and eco-friendly method. This Co-O-ZIF/PANI with optimized surface adsorption effect and suitable Co^(3+)/Co^(2+)ratio, exhibits eminent electrocatalytic activity toward both oxygen reduction and evolution reaction. The as-assembled liquid ZABs based on Co-O-ZIF/PANI achieves a remarkable maximum power density of 123.1 m W cm^(-2) and low discharge-charge voltage gap of 0.81 V at 5 m A cm^(-2) for over 300 cycles. Operando Raman spectroscopy reveals that the excellent performance origins from the optimized surface chemisorption property of O_(2) and H_(2)O brought by Co–O bonds and PANI. This work provides a novel prospect to develop efficient MOF derived bifunctional electrocatalysts by optimizing surface chemisorption properties.展开更多
The recharged zinc-air battery(ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices.Fabricating the efficient bifunctional oxygen catalyst using a convenient s...The recharged zinc-air battery(ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices.Fabricating the efficient bifunctional oxygen catalyst using a convenient strategy is vitally important for the rechargeable ZAB.In this study,the bimetallic ZIFs-containing electrospun(ES) carbon nanofibers membrane with hierarchically porous structure was prepared by coaxial electrospinning and carbonization process,which was expected to be a bifunctional electrocatalyst for ZABs.Owing to the formed dual single-atomic sites of Co-N_(4) and Zn-N_(4),the obtained ES-Co/ZnCNZIFexhibited the preferable performance toward oxygen reduction reaction(ORR) with E1/2of 0.857 V and JLof 5.52 mA cm^(-2),which were more than Pt/C.Meanwhile,it exhibited a marked oxygen evolution reaction(OER) property with overpotential of 462 mV due to the agglomerated metallic Co nanoparticles.Furthermore,the ZAB based on the ES-Co/Zn-CNZIFcarbon nanofibers membranes delivered peak power density of 215 mW cm^(-2),specific capacity of 802.6 mA h g^(-1),and exceptional cycling stability,far larger than Pt/C+RuO_(2)-based ZABs.A solid-state ZAB based on ES-Co/Zn-CNZIFshowed better flexibility and stability with different bending angles.展开更多
To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedr...To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedrons,which are used as precursors to prepare bimetallic selenide and N-doped carbon(NC)composites.Among them,Fe–Co–Se/NC retains the three-dimensional(3D)polyhedrons with mesoporous structure,and Fe–Co–Se nanoparticles are uniform in size and evenly distributed.When assessed as anode material for lithium-ion batteries,Fe–Co–Se/NC achieves an excellent initial specific capacity of 1165.9 m Ah·g^(-1)at 1.0 A·g^(-1),and the reversible capacity of Fe–Co–Se/NC anode is 1247.4 m Ah·g^(-1)after 550 cycles.It is attributed to that the uniform composite of bimetallic selenides and N-doped carbon can effectively tune redox active sites,the stable 3D structure of Fe–Co–Se/NCs guarantees the structural stability and wettability of the electrolyte,and the uniform distribution of Fe–Co–S nanoparticles in size esuppresses the volume expansion and accelerates the electrochemical reaction kinetics.展开更多
The pyrolysis under inert atmosphere has been widely used for the synthesis of metal containing heteroatoms doped carbon materials, versatile catalysts for various reactions. However, it is difficult to prevent metal ...The pyrolysis under inert atmosphere has been widely used for the synthesis of metal containing heteroatoms doped carbon materials, versatile catalysts for various reactions. However, it is difficult to prevent metal nanoparticles aggregation during pyrolysis process. Herein, we reported the efficient synthesis of nitrogen doped carbon hollow nanospheres with cobalt nanoparticles (Co NP, ca. 10nm in size) distributed uniformly in the shell via pyrolysis of yolk-shell structured Zn-Co-ZIFs@polydopamine (PDA). PDA acted as both protection layer and carbon source, which successfully prevented the aggregation of cobalt nanoparticles during high-temperature pyrolysis process. The Co NP and N containing carbon (Co NP/NC) hollow nanospheres were active for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), affording overpotential of 430 mV at 10 mA/cm2 for OER in 1 M KOH and comparable half-wave potential to that of Pt/C (0.80V vs RHE) for ORR in 0.1 M KOH. The superior performance of carbon hollow nanospheres for both OER and ORR was mainly attributed to its small metal nanoparticles, N-doping and hollow nanostructure. The protection and confinement effect that originated from PDA coating strategy could be extended to the synthesis of other hollow structured carbon materials, especially the ones with small metal nanoparticles.展开更多
Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial abilit...Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51603052 and 51573216)the Fundamental Research Funds for the Central Universities(Grant Nos.18lgpy02 and 16lgjc66).
文摘Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysis,sensing,electrochemistry,and a great number of emerging purposes.As a classic MOF,zeolitic imidazolate framework-8(ZIF-8)is conventionally one of the very few MOF members that has been commercialized with considerable production.
基金financially supported by Natural Science Foundation of China(No.81871411)National Key R&D Program of China(2018YFC0910601)+1 种基金Youth Innovation Promotion Association Foundation of CAS(2017340)The Science&Technology Bureau of Ningbo City(2015B11002).
文摘Zeolitic imidazolate frameworks(ZIFs)as smart drug delivery systems with microenvironment-triggered release have attracted much attention for tumor therapy.However,the exploration of ZIFs in biomedicine still encounters many issues,such as inconvenient surface modification,fast drug release during blood circulation,undesired damage to major organs,and severe in vivo toxicity.To address the above issues,we developed an Mn-ZIF-90 nanosystem functionalized with an originally designed active-targeting and pH-responsive magnetic resonance imaging(MRI)Y1 receptor ligand[Asn28,Pro30,Trp32]-NPY(25-36)for imaging-guided tumor therapy.After Y1 receptor ligand modification,the Mn-ZIF-90 nanosystem exhibited high drug loading,better blood circulation stability,and dual breast cancer cell membrane and mitochondria targetability,further favoring specific microenvironment-triggered tumor therapy.Meanwhile,this nanosystem showed promising T1-weighted magnetic resonance imaging contrast in vivo in the tumor sites.Especially,this nanosystem with fast clean-up had almost no obvious toxicity and no damage occurred to the major organs in mice.Therefore,this nanosystem shows potential for use in imaging-guided tumor therapy.
基金supports received from the National Natural Science Foundation of China (21776301,21636009)are gratefully acknowledged.
文摘Although zeolitic imidazolate frameworks(ZIFs)have bright prospects in wide fields like gas storage/separation,catalysis and medicine,etc.,their large-scale applications are bottlenecked by the absence of their low-cost commercial production technique.Here,we report an uncon ventional method suitable for environmentally friendly and low-cost mass-production of ZIFs.In this method,taking the synthesis of ZIF-8 as an example,ZnO was used instead of Zn(NO_(3))_(2) in traditional solvent synthesis methods and CO_(2) was introduced to dissolve ZnO in aqueous solution of 2-methylimidazole(HMeim)and form water soluble salt([ZnMeim]^(+)[MeimCOO]^(-))at room temperature.Then,by removing CO_(2) through heating or vacuuming,Meim-ions are produced and instantaneously assemble with[ZnMeim]^(+)s to generate ZIF-8 without any by product.Due to the absence of strong acid anions(such as NO^(-)_(3) and Cl^(-) et al.)in solution,the washing of filter cake required in the conventional approaches could be omitted and the filtrate containing only water and HMeim could be reused completely.This method is really green as no waste gas or liquid generates because CO_(2) and water could be recycled perfectly.It overcomes almost all bottlenecks occurred in commercial production of ZIF-8 when using traditional methods.A pilot plant was established for mass-production of ZIF-8 and hundreds kilograms of ZIF-8 was produced,which indicates that the new method is not only environmentally friendly but also low cost and commercial accessibility.It is expected that the new method would open an avenue for commercial applications of ZIFs.
基金the financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)Guangdong Provincial International Joint Research Center for Energy Storage Materials(2023A0505090009)。
文摘As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting the mechanical strains and alleviating phase degradation upon cycling.Hereinafter,we propose a strategy using a zeolitic imidazolate framework(ZIF)as the self-sacrificing template to directionally prepare a series of LiNi_(0.1)Co_(0.9)O_(2)(LNCO)with tailorable electrochemical properties.The rational selection of sintering temperature imparts the superiority of the resultant products in lithium storage,during which the sample prepared at 700℃(LNCO-700)outperforms its counterparts in cyclability(156.8 mA h g^(-1)at 1 C for 200 cycles in half cells,1 C=275 mA g^(-1))and rate capability due to the expedited ion/electron transport and the strengthen mechanical robustness.The feasibility of proper Ni doping is also divulged by half/full cell tests and theoretical study,during which LNCO-700(167 mA h g^(-1)at 1 C for 100 cycles in full cells)surpasses LCO-700 in battery performance due to the mitigated phase deterioration,stabilized layered structu re,ameliorated electro nic co nductivity,a nd exalted lithium sto rage activity.This work systematically unveils tailorable electrochemical behaviors of LNCO to better direct their practical application.
基金supported by the National Natural Science Foundation of China (Nos. 11775037 and 21676030)the Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM212110)The Postgraduate Innovation Project of Changzhou University (KYCX19_1782)。
文摘A novel ZIF-8-CMC hybrid material was fabricated from the hybridization of ZIF-8 and carboxymethylcellulose(CMC) by impregnation method for n-hexane/3-methylpentane separation.The surface properties of ZIF-8 were tailored by introducing CMC into ZIF-8 nanoparticles.In this work,adsorption separation of n-hexane(nHEX) and 3-methylpentane(3 MP) on ZIF-8-CMC were investigated by batch vapor-phase adsorption and liquid-phase breakthrough adsorption.The adsorption selectivity of nHEX/3 MP reversed from preferable adsorption of nHEX to preferable adsorption of 3 MP upon the increasing of CMC containing in the hybrid materials.As the temperature increases,the adsorption amounts of nHEX and 3 MP decrease.With the increasing of CMC contents,the nHEX uptake decreased,the uptake capacity of 3 MP increased gradually.For liquid-phase breakthrough adsorption,the dynamic adsorption capacity of nHEX also decreased with the increasing of temperature.
基金Supported by NNSFC(No.21573236)the State Key Laboratory of Fine Chemicals(No.KF 1804)+1 种基金the Foundation of Ningde Normal University(No.2018Y04 and 2018Q105)the Natural Science Foundation of Fujian Province(No.2019J01839)
文摘Urothermal method was firstly used to synthesize zeolitic tetrazolate-imidazolate frameworks. By using 2-imidazolidone hemihydrate(e-urea) as solvent, a new compound, namely ZTIF-17 with GIS topology, has been obtained by mixing 5,6-dimethylbenzimidazole and 5-ethylthiotrazole ligands, and characterized by powder and single-crystal X-ray diffraction, and thermogravimetric(TG) analyses. In addition, ZTIF-17 exhibited strong photoluminescence at room temperature. The result suggests that urothermal method is powerful to construct new kind of porous materials.
基金supported by the National Natural Science Foundation of China(22278289 and 21822808)the Science Foundation for Distinguished Young Scholar of Shanxi Province(202303021223002)the Special Fund for Science and Technology Innovation Teams of Shanxi Province(202204051001009).
文摘The adsorption and separation of diols from dilute aqueous solution using hydrophobic materials is very challenging due to the strong diol-water hydrogen-bonding interactions. Herein, we screened hydrophobic zeolitic imidazolate frameworks(ZIFs) with chabazite(CHA) topology for separation of 2,3-butanediol(2,3-BDO) and 1,3-propanediol(1,3-PDO), which had junctional and hydrophobic traps matching the two end methyl groups of the 2,3-BDO molecule. Based on CHA-ZIFs with the same small-sized ligand 2-methylimidazole(mIm) and different large-sized ligand benzimidazole derivatives(RbIm),CHA-ZIFs with larger surface areas were obtained by the addition of excess small-sized ligand mIm in the synthesis process. We showed that all of the hydrophobic CHA-ZIFs preferentially adsorbed 2,3-BDO over 1,3-PDO by static batch adsorption and dynamic column adsorption experiments. But ZIF-301 and ZIF-300 with halogen groups exhibited better adsorptive separation performance for 2,3-BDO/1,3-PDO than ZIF-302 with methyl groups. For a typical ZIF-301, its adsorption capacity for 2,3-BDO was 116.4 mg·g^(-1)and selectivity for 2,3-BDO/1,3-PDO was 3.8 in dynamic column adsorption of the binary-component system(2,3-BDO/1,3-PDO: 50 g·L^(-1)/50 g·L^(-1)). Computational simulations revealed that 2,3-BDO preferentially adsorbed in a trap at the junction between the cha and d6r cages of CHA-ZIFs,meaning the strong host-guest interactions. Therefore, the hydrophobic CHA-ZIFs with a junctional trap were promising candidate materials for adsorbing 2,3-BDO, which also provided a new perspective for separating diols in dilute aqueous solutions.
基金the National Natural Science Foundation of China(21771018,21875004)Beijing University of Chemical Technology(start-up grant buctrc201901,BUCT,China)Technology Innovation Project of New Energy Vehicles Industry and Pulead Technology Industry Co.Ltd。
文摘Lithium metal attracts growing attention as an ideal anode candidate for next generation lithium battery systems owing to its high capacity,low density,and low working potential.However,the volume expansion of the bulk and dendrite growth on the surface of lithium anode limits its practical application.Herein,we fabricate a composite lithium host featuring both multiple scaled structure and lithiophilic property to address obstacles at both aspects of bulk and surface simultaneously.In which,the multiple scaled structure provides void space to accommodate lithium volume change while zinc and cobalt oxides sites derived from Zeolitic Imidazolate Frameworks can react with lithium and form a stable solid electrolyte interphase,leading to a stable cycling of lithium symmetrical cell for more than 500 cycles with voltage hysteresis of only 88 mV at 2 mAcm^-2 and 5 mAh cm^-2.Moreover,full cells paired with LiFePO4 cathode can realize 500 cycles with 99.2%capacity retention,showing great potential for practical applications.The excellent electrochemical performance of the composite lithium anode proves the effectiveness of our anode design with multiple scaled structure and lithiophilic feature,which can be also expanded to other metal anodes for batteries.
基金financial supports from the National Natural Science Foundation of China(21773293 , 21603264)CAS Pioneer Hundred Talents Program (J. Di)+1 种基金The National Key Research and Development Program of China(2016YFA0203301)Key Research Program of Frontier Science of Chinese Academy of Sciences(QYZDB-SSW-SLH031)
文摘Recently, the development of high-performance bifunctional oxygen catalysts integrated with flexible conductive scaffolds f or rechargeable metal-air batteries has attracted considerable interest, driving by fastgrowing wearable electronics. Herein, we report a flexible bifunctional oxygen catalyst thin film consisting of Co–N–C bifunctional catalysts embedding in carbon nanotube(CNT) networks. The catalyst is readily prepared by pyrolysis of cobalt-based zeolitic imidazolate frameworks(ZIF-67) that are in-situ synthesized in CNT networks. Such catalyst film demonstrates very high catalytic activities for oxygen reduction(onset potential: 0.91 V, and half-wave potential: 0.87 V vs. RHE) and oxygen evolution(10 m Acm^-2 at 1.58 V) reactions, high methanol tolerance property, and long-term stability(97% current retention). Moreover, our integrated catalyst film shows very good structure flexibility and robustness. Based on the obtained film air electrodes, flexible Zn–air batteries demonstrate low charging and discharging overpotentials(0.82 V at 1 m A cm^-1) and excellent structure stability in the bending tests. These results indicate that presently reported catalyst films are potential air electrodes for flexible metal–air batteries.
基金financially supported by the National Natural Science Foundation of China (51772135 and 51872124)the Ministry of Education of China (6141A02022516)+6 种基金the Natural Science Foundation of Guangdong Province (2014A030306010)the Natural Science Foundation of Guangdong Province (2021A1515010504)the Natural Science Key Foundation of Guangdong Province (2019B1515120056)the Natural Science Foundation of Guangzhou (201904010049)the Jinan University (88016105)the Innovation Team Project of Foshan City (FS0AA-KJ919-4402-0086)the Fundamental Research Foundation for the Central Universities(21617326 and 11619103)。
文摘Metal organic frameworks(MOFs) have been considered as compelling precursor for miscellaneous applications. However, their unsatisfied electrocatalytic performance limits their direct application as electrocatalyst. Herein, by incorporating the cobalt-oxide bonds and polyaniline(PANI) with two-dimension zeolitic imidazolate frameworks(ZIFs), a novel bifunctional catalyst(Co-O-ZIF/PANI) for Zn-air battery was designed based on a facile and eco-friendly method. This Co-O-ZIF/PANI with optimized surface adsorption effect and suitable Co^(3+)/Co^(2+)ratio, exhibits eminent electrocatalytic activity toward both oxygen reduction and evolution reaction. The as-assembled liquid ZABs based on Co-O-ZIF/PANI achieves a remarkable maximum power density of 123.1 m W cm^(-2) and low discharge-charge voltage gap of 0.81 V at 5 m A cm^(-2) for over 300 cycles. Operando Raman spectroscopy reveals that the excellent performance origins from the optimized surface chemisorption property of O_(2) and H_(2)O brought by Co–O bonds and PANI. This work provides a novel prospect to develop efficient MOF derived bifunctional electrocatalysts by optimizing surface chemisorption properties.
基金supported by the Beijing Natural Science Foundation (2222004)。
文摘The recharged zinc-air battery(ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices.Fabricating the efficient bifunctional oxygen catalyst using a convenient strategy is vitally important for the rechargeable ZAB.In this study,the bimetallic ZIFs-containing electrospun(ES) carbon nanofibers membrane with hierarchically porous structure was prepared by coaxial electrospinning and carbonization process,which was expected to be a bifunctional electrocatalyst for ZABs.Owing to the formed dual single-atomic sites of Co-N_(4) and Zn-N_(4),the obtained ES-Co/ZnCNZIFexhibited the preferable performance toward oxygen reduction reaction(ORR) with E1/2of 0.857 V and JLof 5.52 mA cm^(-2),which were more than Pt/C.Meanwhile,it exhibited a marked oxygen evolution reaction(OER) property with overpotential of 462 mV due to the agglomerated metallic Co nanoparticles.Furthermore,the ZAB based on the ES-Co/Zn-CNZIFcarbon nanofibers membranes delivered peak power density of 215 mW cm^(-2),specific capacity of 802.6 mA h g^(-1),and exceptional cycling stability,far larger than Pt/C+RuO_(2)-based ZABs.A solid-state ZAB based on ES-Co/Zn-CNZIFshowed better flexibility and stability with different bending angles.
基金financially supported by the National Natural Science Foundation of China(No.52102100)the Natural Science Foundation of Jiangsu Province(No.BK20181469)the Guangdong Basic and Applied Basic Research Foundation,China(No.2020A1515110035)。
文摘To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedrons,which are used as precursors to prepare bimetallic selenide and N-doped carbon(NC)composites.Among them,Fe–Co–Se/NC retains the three-dimensional(3D)polyhedrons with mesoporous structure,and Fe–Co–Se nanoparticles are uniform in size and evenly distributed.When assessed as anode material for lithium-ion batteries,Fe–Co–Se/NC achieves an excellent initial specific capacity of 1165.9 m Ah·g^(-1)at 1.0 A·g^(-1),and the reversible capacity of Fe–Co–Se/NC anode is 1247.4 m Ah·g^(-1)after 550 cycles.It is attributed to that the uniform composite of bimetallic selenides and N-doped carbon can effectively tune redox active sites,the stable 3D structure of Fe–Co–Se/NCs guarantees the structural stability and wettability of the electrolyte,and the uniform distribution of Fe–Co–S nanoparticles in size esuppresses the volume expansion and accelerates the electrochemical reaction kinetics.
文摘The pyrolysis under inert atmosphere has been widely used for the synthesis of metal containing heteroatoms doped carbon materials, versatile catalysts for various reactions. However, it is difficult to prevent metal nanoparticles aggregation during pyrolysis process. Herein, we reported the efficient synthesis of nitrogen doped carbon hollow nanospheres with cobalt nanoparticles (Co NP, ca. 10nm in size) distributed uniformly in the shell via pyrolysis of yolk-shell structured Zn-Co-ZIFs@polydopamine (PDA). PDA acted as both protection layer and carbon source, which successfully prevented the aggregation of cobalt nanoparticles during high-temperature pyrolysis process. The Co NP and N containing carbon (Co NP/NC) hollow nanospheres were active for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), affording overpotential of 430 mV at 10 mA/cm2 for OER in 1 M KOH and comparable half-wave potential to that of Pt/C (0.80V vs RHE) for ORR in 0.1 M KOH. The superior performance of carbon hollow nanospheres for both OER and ORR was mainly attributed to its small metal nanoparticles, N-doping and hollow nanostructure. The protection and confinement effect that originated from PDA coating strategy could be extended to the synthesis of other hollow structured carbon materials, especially the ones with small metal nanoparticles.
基金supported by the Excellent Youth Foundation of Henan Scientific Committee,China(222300420018)Key Scientific Research Projects in Universities of Henan Province,China(21zx006)。
文摘Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units.