We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air hole...We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air holes and the pitch of two adjacent air holes are changed. It is shown that the proposed photonic crystal fiber has high birefringence up to the order of 10-2 and double-zero dispersion points are at the wavelengths of 1310 nm and 800 rim, simultaneously. At the same time, the normalized power and the extinction ratios of the proposed photonic crystal fiber have been simulated. It is demonstrated that, at the wavelength of 1310 rim, the x-polarized mode and the y-polarized mode are separated when the propagation distance is 2.481 ram.展开更多
A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion prop- erty and model birefringence are studied by employing the finite element method. The simulation result re...A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion prop- erty and model birefringence are studied by employing the finite element method. The simulation result reveals the changing patten of dispersion parameter versus the geometry. The influence of the large frequency band of terahertz on birefringence is also discussed. The design of low loss, high birefringence THz-PCFs with zero dispersion frequency at 0.3 THz is presented.展开更多
This work presents a numerical investigation of the self-steepening(SS) effect on the soliton spectral tunneling(SST) effect in a photonic crystal fiber(PCF) with three zero dispersion wavelengths. Interestingly...This work presents a numerical investigation of the self-steepening(SS) effect on the soliton spectral tunneling(SST) effect in a photonic crystal fiber(PCF) with three zero dispersion wavelengths. Interestingly, the spectral range and flatness can be flexibly tuned by adjusting the SS value. When the SS coefficient increases, the energy between solitons and dispersion waves is redistributed, and the red-shifted soliton forms earlier in the region of long wavelength anomalous dispersion. As a consequence, the SST becomes more obvious. The findings of this work provide interesting insights in regard to the impact of the SST effect on tailored supercontinuum generation.展开更多
A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was ...A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was adopted to investigate its characteristics, including birefringence, nonlinearity, and dispersion. The PCF exhibited a very high birefringence of 2.89x10-2 and very high nonlinear coefficient of 102.69 W-1 .km 1. In particular, there were two zero-dispersion wave- lengths (ZDWs) in the visible (X: 640-720 nm and Y: 730-760 nm) and near-infrared regions (X: 1050-1606 nm and Y: 850-1500 nm). The combination of high birefringence and nonlinearity allowed the PCF to maintain the polarization state and generate a broadband super continuum, with potential applications in nonlinear optics.展开更多
In this paper, a novel photonic crystal fiber (PCF) with high birefringence and nonlinearity is designed. The charac- teristics of birefringence, dispersion and nonlinearity are studied by using the full-vector fini...In this paper, a novel photonic crystal fiber (PCF) with high birefringence and nonlinearity is designed. The charac- teristics of birefringence, dispersion and nonlinearity are studied by using the full-vector finite element method (FVFEM). The numerical results show that the phase birefringence and nonlinear coefficient of PCF can be up to 4.51× 10-3 and 32.8972 w-l.km-1 at 1.55 μm, respectively. The proposed PCF could be found to have important applications in the polarization-dependent nonlinear optics such as the pulse compress and reshaping in the C waveband.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61178026)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203035)
文摘We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air holes and the pitch of two adjacent air holes are changed. It is shown that the proposed photonic crystal fiber has high birefringence up to the order of 10-2 and double-zero dispersion points are at the wavelengths of 1310 nm and 800 rim, simultaneously. At the same time, the normalized power and the extinction ratios of the proposed photonic crystal fiber have been simulated. It is demonstrated that, at the wavelength of 1310 rim, the x-polarized mode and the y-polarized mode are separated when the propagation distance is 2.481 ram.
基金Project supported by the National Natural Science Foundation of China (Grant No.10874145)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20091333110010)+1 种基金the Natural Science Foundation of Hebei Province of China (Grant No.F2009000481)the Postdoctoral Science Foundation of China (Grant Nos.20080440014 and 200902046)
文摘A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion prop- erty and model birefringence are studied by employing the finite element method. The simulation result reveals the changing patten of dispersion parameter versus the geometry. The influence of the large frequency band of terahertz on birefringence is also discussed. The design of low loss, high birefringence THz-PCFs with zero dispersion frequency at 0.3 THz is presented.
基金supported by the National Natural Science Foundation of China(Nos.61275137 and 61571186)the Natural Science Foundation of Hunan Province of China(No.2018JJ2061)
文摘This work presents a numerical investigation of the self-steepening(SS) effect on the soliton spectral tunneling(SST) effect in a photonic crystal fiber(PCF) with three zero dispersion wavelengths. Interestingly, the spectral range and flatness can be flexibly tuned by adjusting the SS value. When the SS coefficient increases, the energy between solitons and dispersion waves is redistributed, and the red-shifted soliton forms earlier in the region of long wavelength anomalous dispersion. As a consequence, the SST becomes more obvious. The findings of this work provide interesting insights in regard to the impact of the SST effect on tailored supercontinuum generation.
基金Project supported by the National Natural Science Foundation of China(Grant No.61475029)
文摘A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was adopted to investigate its characteristics, including birefringence, nonlinearity, and dispersion. The PCF exhibited a very high birefringence of 2.89x10-2 and very high nonlinear coefficient of 102.69 W-1 .km 1. In particular, there were two zero-dispersion wave- lengths (ZDWs) in the visible (X: 640-720 nm and Y: 730-760 nm) and near-infrared regions (X: 1050-1606 nm and Y: 850-1500 nm). The combination of high birefringence and nonlinearity allowed the PCF to maintain the polarization state and generate a broadband super continuum, with potential applications in nonlinear optics.
基金Project partly supported by the State Major Basic Research Development Program of China(Grant No.2010CB327604)the National Natural Science Foundation of China(Grant No.61377100)
文摘In this paper, a novel photonic crystal fiber (PCF) with high birefringence and nonlinearity is designed. The charac- teristics of birefringence, dispersion and nonlinearity are studied by using the full-vector finite element method (FVFEM). The numerical results show that the phase birefringence and nonlinear coefficient of PCF can be up to 4.51× 10-3 and 32.8972 w-l.km-1 at 1.55 μm, respectively. The proposed PCF could be found to have important applications in the polarization-dependent nonlinear optics such as the pulse compress and reshaping in the C waveband.