This paper proposes a zer o current and zero voltage switching (ZCZVS) PWM Boost full bridge (FB) conve rter. With series inductors, the leading switches can realize zero current swit ching (ZCS) in a wide load ra...This paper proposes a zer o current and zero voltage switching (ZCZVS) PWM Boost full bridge (FB) conve rter. With series inductors, the leading switches can realize zero current swit ching (ZCS) in a wide load range using the energy of the output capacitor. Ma king use of parasitic capacitors of the lagging switches and parallel auxiliary i nductance with the primary winding of the transformer, the lagging switches can realize zero voltage switching (ZVS) under any load. Compared with the ZCS PWM Boost FB converter, the new converter has no current duty cycle loss. Operat ional principle and parameter design are analyzed. Experimental results verify the effectiveness of the proposed converter.展开更多
Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a c...Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a current enhanced principle, and based on the principle, a novel phase shifted converter is proposed, which adds an auxi liary resonant net to the conventional full bridge converter to help the lagging bridge leg to realize ZVS. The principle and the design of the novel converter are analyzed, and the simulational and experimental results verify the principle.展开更多
A soft switching three-transistor push-pull(TTPP)converter is proposed in this paper. The 3rd transistor is inserted in the primary side of a traditional push-pull converter. Two primitive transistors can achieve zero...A soft switching three-transistor push-pull(TTPP)converter is proposed in this paper. The 3rd transistor is inserted in the primary side of a traditional push-pull converter. Two primitive transistors can achieve zero-voltage-switching (ZVS) easily under a wide load range, the 3rd transistor can also realize zero-voltage-switching assisted by leakage inductance. The rated voltage of the 3rd transistor is half of that of the main transistors. The operation theory is explained in detail. The soft-switching realization conditions are derived. An 800 W with 83.3 kHz switching frequency prototype has been built. The experimental result is provided to verify the analysis.展开更多
Nowadays, distributed optimization algorithms are widely used in various complex networks. In order to expand the theory of distributed optimization algorithms in the direction of directed graph, the distributed conve...Nowadays, distributed optimization algorithms are widely used in various complex networks. In order to expand the theory of distributed optimization algorithms in the direction of directed graph, the distributed convex optimization problem with time-varying delays and switching topologies in the case of directed graph topology is studied. The event-triggered communication mechanism is adopted, that is, the communication between agents is determined by the trigger conditions, and the information exchange is carried out only when the conditions are met. Compared with continuous communication, this greatly saves network resources and reduces communication cost. Using Lyapunov-Krasovskii function method and inequality analysis, a new sufficient condition is proposed to ensure that the agent state finally reaches the optimal state. The upper bound of the maximum allowable delay is given. In addition, Zeno behavior will be proved not to exist during the operation of the algorithm. Finally, a simulation example is given to illustrate the correctness of the results in this paper.展开更多
The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS)...The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS) PWM push pull three level converter in which the voltage stress of switches is input voltage. With phase shifted modulation strategy, the leading switches can only realize zero voltage switching (ZVS), and the lagging switches can realize ZCS when block capacitor and block diodes are added. Using the strategy, the converter overcomes the drawbacks presented by the conventional push pull converter, such as magnetic aberration, large switch loss, and voltage spike on switches, so it can get higher efficiency, and a wider application area. The operating principle of the new converter is analyzed and verified on a 600 W, 50 kHz experimental prototype. Several zero voltage and zero current switching PWM push pull three level converters are proposed.展开更多
A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (z...A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (zero voltage switching) mode, therefore the loss is reduced and EMI (electromagnetic interference) is suppressed. The paper analyzes the operation of ZVS, and discusses the methods for maintaining a unit power factor and constant DC voltage. Changing the modulation index M and the phase angle θ keeps the input current in phase with the voltage. It also keeps the current sinusoidal, and ensures a constant output voltage.展开更多
The FB-ZVZCS-PWM converter is realized by the way of subjoiningblock-capacitor into the FB-ZVS-PWM converter. At the freewheeling interval, the primary current isattenuated fast to zero and maintained. And then, power...The FB-ZVZCS-PWM converter is realized by the way of subjoiningblock-capacitor into the FB-ZVS-PWM converter. At the freewheeling interval, the primary current isattenuated fast to zero and maintained. And then, power device of the static leg becomes azero-current-switch (ZCS), power device of the shifted leg becomes a zero-voltage-switch(ZVS). Thus,on one hand IGBT (Insulated gate bipolar transistor) with tail current can be easily used infull-bridge soft-switching converter; on the other hand additional circuiting energy is greatlyreduced. At the same time, less duty cycle loss, lower secondary parasitic resonance, widersoft-switching load range can be achieved. Based on the existing component models in the Pspicesoftware package, a combined model of IGBT is established, in which a non-linear capacitor isintroduced to replace the parasitic capacitor. Using this model, computerized simulation isconducted for the FB-ZVZCS-PWM soft-switching converter, the switching and energy-transferringcharacteristics of the power device are analyzed. Finally, based on the achievement above, a 10 kWarc welding inverter with FB-ZVZCS-PWM converter is developed. The simulation results are testifiedby experiments. It is proved that by adopting appropriate models, computerized simulation is aneffective and useful tool for the development of the arc welding inverter.展开更多
By using the output inductors and body capacitances without adding any component compared with hard switching synchronous rectifier,the topology of a soft switched synchronous rectifier with phase-shifted full bridge ...By using the output inductors and body capacitances without adding any component compared with hard switching synchronous rectifier,the topology of a soft switched synchronous rectifier with phase-shifted full bridge zero voltage switching DC/DC converter is proposed. The converter efficiency is maximized due to soft switching of the full bridge MOSFETs and the synchronous MOSFETs, and also the low conduction loss of synchronous MOSFET. The operation principles of the circuit are analyzed in detail and the small-signal model is derived, also the converter dynamic characteristics are analyzed. Frequency responses of transfer functions under different values of transformer primary leakage inductance are discussed. The experimental results were obtained from a 400 V input and 100 A/12 V output DC/DC converter operating at 100 kHz. The results show that the converter efficiency is 2% higher in rated power than traditional diode rectifier.展开更多
In traction application,speed range of motor is an important index for motor drives.In AC motor control,the maximum speed of the motor is limited by the output voltage capability of the traditional three-phase inverte...In traction application,speed range of motor is an important index for motor drives.In AC motor control,the maximum speed of the motor is limited by the output voltage capability of the traditional three-phase inverter with star connenction of windings.Switching the star connection to delta connection in high-speed range can extend the speed range.In order to extend the speed operation region,star-delta switch proposed by many literatures relies on mechanical relay,which needs a dead zone of tens of milliseconds and seriously affects torque output.Besides,the traditional method will cause current overshoot during the switch transient process,decreasing the device security and reliability.Aiming at the defects existing in the star-delta hard switching,this paper proposes a star-delta soft switching method.Without adding extra power electronics devices,DC-bus capacitor is used to provide the path of zero axis current in the transient process,which helps to achieve the smooth torque output and zero current switch in the transient.Experiments have been done to validate the performance of the proposed method.The switching transient from star to delta connection in the motor drive can be much more stable than hard switching method.展开更多
In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter u...In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter using a simple auxiliary circuit was designed. The ZVZCS soft switch is achieved by the resonance among the resisting electromagnetic deflection capacitor, the capacitor of the simple auxiliary network and the leakage inductor of transformer. There are no dissipation devices of the saturation inductor and the auxiliary switch in the converter, meantime the capacitor of the auxiliary circuit is also used to clamp the voltage of the rectifier, and there is no additional clamped circuit. There is no big circulating current in the converter, all the active and passive devices work on the condition of the low current and voltage stress, and the proposed converter has wide load range and small duty loss.展开更多
The soft switching are welding inverter reduces switching losses and improves operating environment of devices by using Zero-Voltage-Transition (ZVT) technique. Step-by-step analysis of each timing interval and the as...The soft switching are welding inverter reduces switching losses and improves operating environment of devices by using Zero-Voltage-Transition (ZVT) technique. Step-by-step analysis of each timing interval and the associating voltage and current waveforms are included for the Full-Bridge Zero-Voltage-Switched PWM converter. Numerous design equations supporting the phase-shifted soft switching technique are highlighted.展开更多
The zero-voltage quasi-resonant boost switching DC-DC converter has been inves-tigated by using the time averaging equivalent circuit approach of periodically switching linearnetworks.The DC steady state and AC small ...The zero-voltage quasi-resonant boost switching DC-DC converter has been inves-tigated by using the time averaging equivalent circuit approach of periodically switching linearnetworks.The DC steady state and AC small signal characteristics of the converter are also given.展开更多
In this paper, analysis, design and implementation of non-isolated soft-switching bidirectional DC-DC converter with an active switch are described. The proposed topology gives the output voltage as twice as the input...In this paper, analysis, design and implementation of non-isolated soft-switching bidirectional DC-DC converter with an active switch are described. The proposed topology gives the output voltage as twice as the input voltage and enhances the efficiency up to 94.5% and 92.9% for boost and buck mode operation by proper selection of the duty cycle. Soft switching can be achieved at both steps up and step down operating modes. Small signal analysis based on state space averaging and transfer functions have been presented in detail for the proposed converter. Finally, the feasibility of the desired converter is confirmed to mat lab simulation and investigational results.展开更多
This paper proposes the design and experimentation of digital control of soft-switched interleaved boost converter using FPGA for Telecommunication System. The switching devices in the proposed converter are turned on...This paper proposes the design and experimentation of digital control of soft-switched interleaved boost converter using FPGA for Telecommunication System. The switching devices in the proposed converter are turned on and off with Zero Voltage Switching (ZVS) and Zero Current Switching (ZCS) respectively. The circuit is operated in Continuous Conduction Mode (CCM) with various load ranges having duty cycle of more than 50%. The proposed converter is studied by developing the simulation module in MATLAB/SIMULINK. A PI controller is designed and implemented in FPGA to obtain a regulated DC output for line and load variations. Simulation and experimentation results are verified with a prototype development of the proposed converter. The results indicate that the converter performance is enhanced with closed loop control.展开更多
The multi-phase implementation in the QR (quasi resonant) ZCS (zero current switching) SC (switched capacitor) bidirectional DC-DC converter structure has been proposed to reduce current ripple, switching loss a...The multi-phase implementation in the QR (quasi resonant) ZCS (zero current switching) SC (switched capacitor) bidirectional DC-DC converter structure has been proposed to reduce current ripple, switching loss and significantly increase the converter efficiency and power density. This approach provides a more precise output voltage to obtain voltage conversion ratios from the double-mode versus half-mode to n-mode versus 1/n mode. This is accomplished by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse schemes. The size and cost can be reduced when the proposed converter has been designed with the coupled inductors. The simulation and experimental results have been used to demonstrate the performance of the two-phase with and without coupled inductor interleaved QR ZCS SC converters for bidirectional power flow control application, and an extending structure for N-phase is mentioned.展开更多
文摘This paper proposes a zer o current and zero voltage switching (ZCZVS) PWM Boost full bridge (FB) conve rter. With series inductors, the leading switches can realize zero current swit ching (ZCS) in a wide load range using the energy of the output capacitor. Ma king use of parasitic capacitors of the lagging switches and parallel auxiliary i nductance with the primary winding of the transformer, the lagging switches can realize zero voltage switching (ZVS) under any load. Compared with the ZCS PWM Boost FB converter, the new converter has no current duty cycle loss. Operat ional principle and parameter design are analyzed. Experimental results verify the effectiveness of the proposed converter.
文摘Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a current enhanced principle, and based on the principle, a novel phase shifted converter is proposed, which adds an auxi liary resonant net to the conventional full bridge converter to help the lagging bridge leg to realize ZVS. The principle and the design of the novel converter are analyzed, and the simulational and experimental results verify the principle.
文摘A soft switching three-transistor push-pull(TTPP)converter is proposed in this paper. The 3rd transistor is inserted in the primary side of a traditional push-pull converter. Two primitive transistors can achieve zero-voltage-switching (ZVS) easily under a wide load range, the 3rd transistor can also realize zero-voltage-switching assisted by leakage inductance. The rated voltage of the 3rd transistor is half of that of the main transistors. The operation theory is explained in detail. The soft-switching realization conditions are derived. An 800 W with 83.3 kHz switching frequency prototype has been built. The experimental result is provided to verify the analysis.
文摘Nowadays, distributed optimization algorithms are widely used in various complex networks. In order to expand the theory of distributed optimization algorithms in the direction of directed graph, the distributed convex optimization problem with time-varying delays and switching topologies in the case of directed graph topology is studied. The event-triggered communication mechanism is adopted, that is, the communication between agents is determined by the trigger conditions, and the information exchange is carried out only when the conditions are met. Compared with continuous communication, this greatly saves network resources and reduces communication cost. Using Lyapunov-Krasovskii function method and inequality analysis, a new sufficient condition is proposed to ensure that the agent state finally reaches the optimal state. The upper bound of the maximum allowable delay is given. In addition, Zeno behavior will be proved not to exist during the operation of the algorithm. Finally, a simulation example is given to illustrate the correctness of the results in this paper.
文摘The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS) PWM push pull three level converter in which the voltage stress of switches is input voltage. With phase shifted modulation strategy, the leading switches can only realize zero voltage switching (ZVS), and the lagging switches can realize ZCS when block capacitor and block diodes are added. Using the strategy, the converter overcomes the drawbacks presented by the conventional push pull converter, such as magnetic aberration, large switch loss, and voltage spike on switches, so it can get higher efficiency, and a wider application area. The operating principle of the new converter is analyzed and verified on a 600 W, 50 kHz experimental prototype. Several zero voltage and zero current switching PWM push pull three level converters are proposed.
文摘A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (zero voltage switching) mode, therefore the loss is reduced and EMI (electromagnetic interference) is suppressed. The paper analyzes the operation of ZVS, and discusses the methods for maintaining a unit power factor and constant DC voltage. Changing the modulation index M and the phase angle θ keeps the input current in phase with the voltage. It also keeps the current sinusoidal, and ensures a constant output voltage.
基金This project is supported by National Natural Science Foundation of China(No.50075003)Municipal Natural Science Foundation of Beijing, China(No.3001001).
文摘The FB-ZVZCS-PWM converter is realized by the way of subjoiningblock-capacitor into the FB-ZVS-PWM converter. At the freewheeling interval, the primary current isattenuated fast to zero and maintained. And then, power device of the static leg becomes azero-current-switch (ZCS), power device of the shifted leg becomes a zero-voltage-switch(ZVS). Thus,on one hand IGBT (Insulated gate bipolar transistor) with tail current can be easily used infull-bridge soft-switching converter; on the other hand additional circuiting energy is greatlyreduced. At the same time, less duty cycle loss, lower secondary parasitic resonance, widersoft-switching load range can be achieved. Based on the existing component models in the Pspicesoftware package, a combined model of IGBT is established, in which a non-linear capacitor isintroduced to replace the parasitic capacitor. Using this model, computerized simulation isconducted for the FB-ZVZCS-PWM soft-switching converter, the switching and energy-transferringcharacteristics of the power device are analyzed. Finally, based on the achievement above, a 10 kWarc welding inverter with FB-ZVZCS-PWM converter is developed. The simulation results are testifiedby experiments. It is proved that by adopting appropriate models, computerized simulation is aneffective and useful tool for the development of the arc welding inverter.
文摘By using the output inductors and body capacitances without adding any component compared with hard switching synchronous rectifier,the topology of a soft switched synchronous rectifier with phase-shifted full bridge zero voltage switching DC/DC converter is proposed. The converter efficiency is maximized due to soft switching of the full bridge MOSFETs and the synchronous MOSFETs, and also the low conduction loss of synchronous MOSFET. The operation principles of the circuit are analyzed in detail and the small-signal model is derived, also the converter dynamic characteristics are analyzed. Frequency responses of transfer functions under different values of transformer primary leakage inductance are discussed. The experimental results were obtained from a 400 V input and 100 A/12 V output DC/DC converter operating at 100 kHz. The results show that the converter efficiency is 2% higher in rated power than traditional diode rectifier.
文摘In traction application,speed range of motor is an important index for motor drives.In AC motor control,the maximum speed of the motor is limited by the output voltage capability of the traditional three-phase inverter with star connenction of windings.Switching the star connection to delta connection in high-speed range can extend the speed range.In order to extend the speed operation region,star-delta switch proposed by many literatures relies on mechanical relay,which needs a dead zone of tens of milliseconds and seriously affects torque output.Besides,the traditional method will cause current overshoot during the switch transient process,decreasing the device security and reliability.Aiming at the defects existing in the star-delta hard switching,this paper proposes a star-delta soft switching method.Without adding extra power electronics devices,DC-bus capacitor is used to provide the path of zero axis current in the transient process,which helps to achieve the smooth torque output and zero current switch in the transient.Experiments have been done to validate the performance of the proposed method.The switching transient from star to delta connection in the motor drive can be much more stable than hard switching method.
文摘In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter using a simple auxiliary circuit was designed. The ZVZCS soft switch is achieved by the resonance among the resisting electromagnetic deflection capacitor, the capacitor of the simple auxiliary network and the leakage inductor of transformer. There are no dissipation devices of the saturation inductor and the auxiliary switch in the converter, meantime the capacitor of the auxiliary circuit is also used to clamp the voltage of the rectifier, and there is no additional clamped circuit. There is no big circulating current in the converter, all the active and passive devices work on the condition of the low current and voltage stress, and the proposed converter has wide load range and small duty loss.
文摘The soft switching are welding inverter reduces switching losses and improves operating environment of devices by using Zero-Voltage-Transition (ZVT) technique. Step-by-step analysis of each timing interval and the associating voltage and current waveforms are included for the Full-Bridge Zero-Voltage-Switched PWM converter. Numerous design equations supporting the phase-shifted soft switching technique are highlighted.
文摘The zero-voltage quasi-resonant boost switching DC-DC converter has been inves-tigated by using the time averaging equivalent circuit approach of periodically switching linearnetworks.The DC steady state and AC small signal characteristics of the converter are also given.
文摘In this paper, analysis, design and implementation of non-isolated soft-switching bidirectional DC-DC converter with an active switch are described. The proposed topology gives the output voltage as twice as the input voltage and enhances the efficiency up to 94.5% and 92.9% for boost and buck mode operation by proper selection of the duty cycle. Soft switching can be achieved at both steps up and step down operating modes. Small signal analysis based on state space averaging and transfer functions have been presented in detail for the proposed converter. Finally, the feasibility of the desired converter is confirmed to mat lab simulation and investigational results.
文摘This paper proposes the design and experimentation of digital control of soft-switched interleaved boost converter using FPGA for Telecommunication System. The switching devices in the proposed converter are turned on and off with Zero Voltage Switching (ZVS) and Zero Current Switching (ZCS) respectively. The circuit is operated in Continuous Conduction Mode (CCM) with various load ranges having duty cycle of more than 50%. The proposed converter is studied by developing the simulation module in MATLAB/SIMULINK. A PI controller is designed and implemented in FPGA to obtain a regulated DC output for line and load variations. Simulation and experimentation results are verified with a prototype development of the proposed converter. The results indicate that the converter performance is enhanced with closed loop control.
文摘The multi-phase implementation in the QR (quasi resonant) ZCS (zero current switching) SC (switched capacitor) bidirectional DC-DC converter structure has been proposed to reduce current ripple, switching loss and significantly increase the converter efficiency and power density. This approach provides a more precise output voltage to obtain voltage conversion ratios from the double-mode versus half-mode to n-mode versus 1/n mode. This is accomplished by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse schemes. The size and cost can be reduced when the proposed converter has been designed with the coupled inductors. The simulation and experimental results have been used to demonstrate the performance of the two-phase with and without coupled inductor interleaved QR ZCS SC converters for bidirectional power flow control application, and an extending structure for N-phase is mentioned.