Nano ZVI particles supported on micro-scale exfoliated graphite were prepared by using KBH4 as reducing agent in the H2O/ethanol system. The supported ZVI materials generally have higher activity and greater flexibili...Nano ZVI particles supported on micro-scale exfoliated graphite were prepared by using KBH4 as reducing agent in the H2O/ethanol system. The supported ZVI materials generally have higher activity and greater flexibility for environmental remediation applications. The exfoliated graphite as the support was treated beforehand to hydrophilic material. Nano iron particles are deposited onto the rough graphite surface while those were formed by borohydride reduction. The possible nitrate reduction pathways were proposed. The TEM image shows that iron particles are highly dispersed on the surface of graphite and several of iron particles are imbedded in the pit of support surface. In this synthesis, iron particles have a nearly spherical shape with a grain size of 50?100 nm. The surface areas of materials with different iron loadings of 3.5%, 7.0%, 10.0%, 15.0% and 20.0%(mass fraction) are 2.89, 9.55, 8.45, 23.8 and 6.18 m2·g?1 by BET surface analyzer. The chemical reduction of nitrate by supported nano ZVI in aqueous solution were tested in series batch experiments. Experiment results suggest that NO3? can be more rapidly reduced to NH4+ at neutral pH and anaerobic conditions by supported nano ZVI than unsupported nano ZVI or ZVI scraps. The 15% nano Fe/graphite shows the best reduction efficiency contrasted with other Fe loading particles.展开更多
A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and th...A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and the combination of ZVI/AC- MDEL/NaCIO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaCIO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaCIO, we found that in the ZVI/AC-MEDL/NaCIO process, ZVI/AC could break the azo bond firstly and then MEDLfNaCIO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency.展开更多
Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment ...Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand(COD), ammonia nitrogen(NH3-N) and total nitrogen(TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum(GC/MS) and gel permeation chromatography(GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.展开更多
Granular zero-valent iron (ZVI) has been widely used to construct permeable reactive barriers (PRB) for the in situ remediation of groundwater contaminated with halogenated hydrocarbons. In the anaerobic condition of ...Granular zero-valent iron (ZVI) has been widely used to construct permeable reactive barriers (PRB) for the in situ remediation of groundwater contaminated with halogenated hydrocarbons. In the anaerobic condition of most groundwater flow systems, iron undergoes corrosion by water and results in hydrogen gas generation. Several studies have shown that some of the hydrogen gas generated at the iron/water interface can diffuse into the iron lattice. Hydrogen gas also can be an electron donor for dechlorination of chlorinated compounds. In this study, the possibility of hydrogen gas bound in the lattice of ZVI playing a role in dehalogenation and improving the degradation efficiency of ZVI was evaluated. Two different granular irons were tested: one obtained from Quebec Metal Powders Ltd (QMP) and the other from Connelly-GPM. Ltd. For each type of iron, two samples were mixed with water and sealed in testing cells. Since the rate of hydrogen entry varies directly with the square root of the hydrogen pressure, one sample was maintained for several weeks under near-vacuum conditions to minimize the amount of hydrogen entering the iron lattice. The other sample was maintained for the same period at a hydrogen pressure of over 400 kPa to maximize the amount of hydrogen entering the iron lattice. The degradation abilities of the reacted ironsand the original iron materials were tested by running several sets of batch tests. The results of this study show little to no improvement of inorganic TCE degradation reactions due to the presence of lattice-stored hydrogen in iron material. This is probably due to the high energiesrequired to release hydrogen trapped in the iron lattice. However, there are certain chemical compounds that can promote hydrogen release from the iron lattice, and there may be bacteria that can utilize lattice-bound hydrogen to carry out dechlorination reactions.展开更多
Nano zero valent iron particles (nZVI) are popular the last few years because of the numerous applications in remediation of a wide range of pollutants in contaminated soils and aquifers. The nZVI particles can be 10 ...Nano zero valent iron particles (nZVI) are popular the last few years because of the numerous applications in remediation of a wide range of pollutants in contaminated soils and aquifers. The nZVI particles can be 10 - 1000 times more reactive than granular or micro-scale ZVI particles due to the small particle size, large specific surface area and high reactivity. An alternative green synthesis procedure was used for the production of nano zero valent iron particles (nZVI) using green tea (GT) extract, which is characterized by its high antioxidant content. Polyphenols in green tea extract possess double role in the synthesis of nZVI, because they not only reduce ferric cations, but also protect nZVI from oxidation and agglomeration as capping agents. The objective of current study was to simulate ata laboratory scale the attachment of GT-nZVI particles on soil material and study the effectiveness of attached nanoparticles for removing hexavalent chromium (Cr(VI)) from contaminated groundwater flowing through the porous soil bed. Column tests were carried out with various flowrates in order to examine the effect of contact time between the attached on porous medium nZVI and the flow-through solution on Cr(VI) reduction. After the completion of column tests the soil material in each column was split in 5 vertical sections, which were further subjected to chemical analyses and leaching tests. According to the results of the study increasing the contact time favors the reduction and removal of Cr(VI) from the aqueous phase. The reductive precipitation of Cr can be described as a reaction that follows a pseudo-first order kinetic law, with rate constant equal to k = 0.0243 ± 0.0011 min-1. Leaching tests indicated that precipitated chromium is not soluble. In the examined soil material, the total amount of precipitated Cr was found to range between 280 and 890 mg/(kg soil), while soluble Cr was less than 1.4 mg/kg and most probably it was due to the presence of residual Cr(VI) solution in the porosity of soil.展开更多
This study investigates the sorption of arsenate from water using zero-valent iron ZVI as sorbent. Batch experiments were carried out to study the sorption kinetics of arsenate under different concentrations of arsena...This study investigates the sorption of arsenate from water using zero-valent iron ZVI as sorbent. Batch experiments were carried out to study the sorption kinetics of arsenate under different concentrations of arsenate varies from 0.5 to 200 mg/l. A kinetic model was considered to describe the arsenates sorption on ZVI material. The kinetics of the arsenate sorption processes were described by the Langmuir kinetic model. The sorption capacity increases with high initial concentration which obtained the maximum sorption 2.1 mg/g at 200 mg/l of arsenate initial concentration. The results show that the rapid initial sorption rates of arsenate were occurred at the beginning of experiments running time, followed by a slower removal that gradually approaches an equilibrium condition. The data from laboratory batch experiments were used to verify the simulation results of the kinetic model resulting in good agreement between measured and modeled results. The results indicate that ZVI could be employed as sorbent materials to enhance the sorption processes and increase the removal rate of arsenate from water.展开更多
As nitrobenzene(NB)is structurally stable and difficult to degrade due to the presence of an electron withdrawing group(nitro group).The sequential nanoscale zero valent iron-persulfate(NZVI-Na_(2)S_(2)O_(8))process w...As nitrobenzene(NB)is structurally stable and difficult to degrade due to the presence of an electron withdrawing group(nitro group).The sequential nanoscale zero valent iron-persulfate(NZVI-Na_(2)S_(2)O_(8))process was proposed in this study for the degradation NB-containing wastewater.The results showed that the NB degradation efficiency and the total organic carbon removal efficiency in the sequential NZVINa_(2)S_(2)O_(8)process were 100%and 49.25%,respectively,at a NB concentration of 200 mg L^(-1),a NZVI concentration of 0.75 g L^(-1),a Na_(2)S_(2)O_(8)concentration of 26.8 mmol L^(-1),an initial pH of 5,and a reaction time of 30 min,which were higher than those(88.53%and 35.24%,respectively)obtained in the NZVI/Na_(2)S_(2)O_(8)process.Sulfate radicals(SO_(4)·-)and hydroxyl radicals(·OH)generated in the reaction were identified directly by electron paramagnetic resonance spectroscopy and indirectly by radical capture experiments,and it was shown that both SO_(4)^(·-)and·OH played a major role in the sequential NZVI-Na_(2)S_(2)O_(8)process.The possible pathways involved in the reduction of NB to aniline(AN)and the further oxidative degradation of AN were determined by gas chromatography-mass spectrometry.展开更多
In this study, iron nano-particles were used to remediate malathion contaminated soil in the concentration range of 1 - 10 μg?g–1. The zero valent iron nano-particles were prepared by reducing ferric chloride soluti...In this study, iron nano-particles were used to remediate malathion contaminated soil in the concentration range of 1 - 10 μg?g–1. The zero valent iron nano-particles were prepared by reducing ferric chloride solution with sodium boro- hydride for remediation of the soil. The optimized quantity of iron nano particles was found to be 0.1 g?kg–1 of soil con- taminated with 10 μg?g–1 of malathion. Malathion was determined in the soil after leaching to water at pH 8.2 and fol- lowed by its oxidation with slight excess of N-bromosuccinimide (NBS). The unconsumed NBS was estimated by measuring the decrease in the color intensity of rhodamine B. Degradation product formed during the oxidation of ma-lathion by zero valent iron was monitored by the Attenuated Total Reflectance Fourier Transform Infrared Spectros- copy (ATR-FTIR). The results clearly showed that quantitative oxidation of malathion was achieved within eight min- utes after the addition of zero valent iron nano particles.展开更多
Increasingly, as regulatory limits become more stringent, selenium has become a parameter of concern. Selenium is a naturally occurring element that is largely mobilized by anthropogenic activity such as mining for fu...Increasingly, as regulatory limits become more stringent, selenium has become a parameter of concern. Selenium is a naturally occurring element that is largely mobilized by anthropogenic activity such as mining for fuel and subsequent combustion, metal ore refining and processing, and agricultural irrigation. Of concern is removing selenium liquid matrices and immobilizing it from leachable solid matrices. Chemical reduction and stabilization using zero valent iron (ZVI) is applicable to both concerns. The solid matrix case study is applicable to ash ponds solids or industrial bag house dust solids. This paper presents data for treatment and stabilization of selenium within a solid matrix using ZVI. The methodology uses an aqueous mediate reaction to promote a stable solid matrix of non-leachable selenium. The paper describes matrix challenges and key variables that effected successful treatment. Testing with simulated and real bag house dust solids were used to establish data to support the permeance of the reaction. The data show that ZVI converts ionic selenium to a zero valent state in the solid matrix. It was also recognized that a fraction of ionic selenium may fail to react with the ZVI, but the results show that despite the presence of the unreacted ionic selenium, the toxicity characteristic leachate procedure (TCLP) results following treatment do not exceed the 1 mg/L hazardous waste criteria.展开更多
基金Project(20477019) supported by the National Natural Science Foundation of China
文摘Nano ZVI particles supported on micro-scale exfoliated graphite were prepared by using KBH4 as reducing agent in the H2O/ethanol system. The supported ZVI materials generally have higher activity and greater flexibility for environmental remediation applications. The exfoliated graphite as the support was treated beforehand to hydrophilic material. Nano iron particles are deposited onto the rough graphite surface while those were formed by borohydride reduction. The possible nitrate reduction pathways were proposed. The TEM image shows that iron particles are highly dispersed on the surface of graphite and several of iron particles are imbedded in the pit of support surface. In this synthesis, iron particles have a nearly spherical shape with a grain size of 50?100 nm. The surface areas of materials with different iron loadings of 3.5%, 7.0%, 10.0%, 15.0% and 20.0%(mass fraction) are 2.89, 9.55, 8.45, 23.8 and 6.18 m2·g?1 by BET surface analyzer. The chemical reduction of nitrate by supported nano ZVI in aqueous solution were tested in series batch experiments. Experiment results suggest that NO3? can be more rapidly reduced to NH4+ at neutral pH and anaerobic conditions by supported nano ZVI than unsupported nano ZVI or ZVI scraps. The 15% nano Fe/graphite shows the best reduction efficiency contrasted with other Fe loading particles.
基金supported by the Major Projects on Control and Rectification of Water Body Pollution (Water Special Project) (No.2009ZX07010-001,2008ZX07526-001)the National Basic Research Program (973) of China (No.2008CB418201)
文摘A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and the combination of ZVI/AC- MDEL/NaCIO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaCIO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaCIO, we found that in the ZVI/AC-MEDL/NaCIO process, ZVI/AC could break the azo bond firstly and then MEDLfNaCIO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency.
基金Project(2006BAJ04A)suppprted by the National Sci-Tech Support Plan,China
文摘Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand(COD), ammonia nitrogen(NH3-N) and total nitrogen(TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum(GC/MS) and gel permeation chromatography(GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.
文摘Granular zero-valent iron (ZVI) has been widely used to construct permeable reactive barriers (PRB) for the in situ remediation of groundwater contaminated with halogenated hydrocarbons. In the anaerobic condition of most groundwater flow systems, iron undergoes corrosion by water and results in hydrogen gas generation. Several studies have shown that some of the hydrogen gas generated at the iron/water interface can diffuse into the iron lattice. Hydrogen gas also can be an electron donor for dechlorination of chlorinated compounds. In this study, the possibility of hydrogen gas bound in the lattice of ZVI playing a role in dehalogenation and improving the degradation efficiency of ZVI was evaluated. Two different granular irons were tested: one obtained from Quebec Metal Powders Ltd (QMP) and the other from Connelly-GPM. Ltd. For each type of iron, two samples were mixed with water and sealed in testing cells. Since the rate of hydrogen entry varies directly with the square root of the hydrogen pressure, one sample was maintained for several weeks under near-vacuum conditions to minimize the amount of hydrogen entering the iron lattice. The other sample was maintained for the same period at a hydrogen pressure of over 400 kPa to maximize the amount of hydrogen entering the iron lattice. The degradation abilities of the reacted ironsand the original iron materials were tested by running several sets of batch tests. The results of this study show little to no improvement of inorganic TCE degradation reactions due to the presence of lattice-stored hydrogen in iron material. This is probably due to the high energiesrequired to release hydrogen trapped in the iron lattice. However, there are certain chemical compounds that can promote hydrogen release from the iron lattice, and there may be bacteria that can utilize lattice-bound hydrogen to carry out dechlorination reactions.
文摘Nano zero valent iron particles (nZVI) are popular the last few years because of the numerous applications in remediation of a wide range of pollutants in contaminated soils and aquifers. The nZVI particles can be 10 - 1000 times more reactive than granular or micro-scale ZVI particles due to the small particle size, large specific surface area and high reactivity. An alternative green synthesis procedure was used for the production of nano zero valent iron particles (nZVI) using green tea (GT) extract, which is characterized by its high antioxidant content. Polyphenols in green tea extract possess double role in the synthesis of nZVI, because they not only reduce ferric cations, but also protect nZVI from oxidation and agglomeration as capping agents. The objective of current study was to simulate ata laboratory scale the attachment of GT-nZVI particles on soil material and study the effectiveness of attached nanoparticles for removing hexavalent chromium (Cr(VI)) from contaminated groundwater flowing through the porous soil bed. Column tests were carried out with various flowrates in order to examine the effect of contact time between the attached on porous medium nZVI and the flow-through solution on Cr(VI) reduction. After the completion of column tests the soil material in each column was split in 5 vertical sections, which were further subjected to chemical analyses and leaching tests. According to the results of the study increasing the contact time favors the reduction and removal of Cr(VI) from the aqueous phase. The reductive precipitation of Cr can be described as a reaction that follows a pseudo-first order kinetic law, with rate constant equal to k = 0.0243 ± 0.0011 min-1. Leaching tests indicated that precipitated chromium is not soluble. In the examined soil material, the total amount of precipitated Cr was found to range between 280 and 890 mg/(kg soil), while soluble Cr was less than 1.4 mg/kg and most probably it was due to the presence of residual Cr(VI) solution in the porosity of soil.
文摘This study investigates the sorption of arsenate from water using zero-valent iron ZVI as sorbent. Batch experiments were carried out to study the sorption kinetics of arsenate under different concentrations of arsenate varies from 0.5 to 200 mg/l. A kinetic model was considered to describe the arsenates sorption on ZVI material. The kinetics of the arsenate sorption processes were described by the Langmuir kinetic model. The sorption capacity increases with high initial concentration which obtained the maximum sorption 2.1 mg/g at 200 mg/l of arsenate initial concentration. The results show that the rapid initial sorption rates of arsenate were occurred at the beginning of experiments running time, followed by a slower removal that gradually approaches an equilibrium condition. The data from laboratory batch experiments were used to verify the simulation results of the kinetic model resulting in good agreement between measured and modeled results. The results indicate that ZVI could be employed as sorbent materials to enhance the sorption processes and increase the removal rate of arsenate from water.
基金supported by the Specialized Research Fund for Sanjin Scholars Program of Shanxi Province(201707)Key Research and Development Plan of Shanxi Province(201903D321059)Shanxi Scholarship Council of China(HGKY2019071)。
文摘As nitrobenzene(NB)is structurally stable and difficult to degrade due to the presence of an electron withdrawing group(nitro group).The sequential nanoscale zero valent iron-persulfate(NZVI-Na_(2)S_(2)O_(8))process was proposed in this study for the degradation NB-containing wastewater.The results showed that the NB degradation efficiency and the total organic carbon removal efficiency in the sequential NZVINa_(2)S_(2)O_(8)process were 100%and 49.25%,respectively,at a NB concentration of 200 mg L^(-1),a NZVI concentration of 0.75 g L^(-1),a Na_(2)S_(2)O_(8)concentration of 26.8 mmol L^(-1),an initial pH of 5,and a reaction time of 30 min,which were higher than those(88.53%and 35.24%,respectively)obtained in the NZVI/Na_(2)S_(2)O_(8)process.Sulfate radicals(SO_(4)·-)and hydroxyl radicals(·OH)generated in the reaction were identified directly by electron paramagnetic resonance spectroscopy and indirectly by radical capture experiments,and it was shown that both SO_(4)^(·-)and·OH played a major role in the sequential NZVI-Na_(2)S_(2)O_(8)process.The possible pathways involved in the reduction of NB to aniline(AN)and the further oxidative degradation of AN were determined by gas chromatography-mass spectrometry.
文摘In this study, iron nano-particles were used to remediate malathion contaminated soil in the concentration range of 1 - 10 μg?g–1. The zero valent iron nano-particles were prepared by reducing ferric chloride solution with sodium boro- hydride for remediation of the soil. The optimized quantity of iron nano particles was found to be 0.1 g?kg–1 of soil con- taminated with 10 μg?g–1 of malathion. Malathion was determined in the soil after leaching to water at pH 8.2 and fol- lowed by its oxidation with slight excess of N-bromosuccinimide (NBS). The unconsumed NBS was estimated by measuring the decrease in the color intensity of rhodamine B. Degradation product formed during the oxidation of ma-lathion by zero valent iron was monitored by the Attenuated Total Reflectance Fourier Transform Infrared Spectros- copy (ATR-FTIR). The results clearly showed that quantitative oxidation of malathion was achieved within eight min- utes after the addition of zero valent iron nano particles.
文摘Increasingly, as regulatory limits become more stringent, selenium has become a parameter of concern. Selenium is a naturally occurring element that is largely mobilized by anthropogenic activity such as mining for fuel and subsequent combustion, metal ore refining and processing, and agricultural irrigation. Of concern is removing selenium liquid matrices and immobilizing it from leachable solid matrices. Chemical reduction and stabilization using zero valent iron (ZVI) is applicable to both concerns. The solid matrix case study is applicable to ash ponds solids or industrial bag house dust solids. This paper presents data for treatment and stabilization of selenium within a solid matrix using ZVI. The methodology uses an aqueous mediate reaction to promote a stable solid matrix of non-leachable selenium. The paper describes matrix challenges and key variables that effected successful treatment. Testing with simulated and real bag house dust solids were used to establish data to support the permeance of the reaction. The data show that ZVI converts ionic selenium to a zero valent state in the solid matrix. It was also recognized that a fraction of ionic selenium may fail to react with the ZVI, but the results show that despite the presence of the unreacted ionic selenium, the toxicity characteristic leachate procedure (TCLP) results following treatment do not exceed the 1 mg/L hazardous waste criteria.