We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge l...We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.展开更多
The mechanism of the locking of the E1 Nino event onset phase to boreal spring (from April to June) in an intermediate coupled ocean-atmosphere model is investigated. The results show that the seasonal variation of ...The mechanism of the locking of the E1 Nino event onset phase to boreal spring (from April to June) in an intermediate coupled ocean-atmosphere model is investigated. The results show that the seasonal variation of the zonal wind anomaly over the equatorial Pacific associated with the seasonal variation of the ITCZ is the mechanism of the locking in the model. From January to March of the E1 Nino year, the western wind anomaly over the western equatorial Pacific can excite the downwelling Kelvin wave that propagates eastward to the eastern and middle Pacific by April to June. From April to December of the year before the E1 Nifio year, the eastern wind anomaly over the equatorial Pacific forces the downwelling Rossby waves that modulate the ENSO cycle. The modulation and the reflection at the western boundary modulate the time of the transition from the cool to the warm phase to September of the year before the E1 Nifio year and cause the strongest downwelling Kelvin wave from the reflected Rossby waves at the western boundary to arrive in the middle and eastern equatorial Pacific by April to June of the E1 Nino year. The superposition of these two kinds of downwelling Kelvin waves causes the El Nino event to tend to occur from April to June.展开更多
The sea surface temperature (SST) anomaly of the eastern Indian Ocean (EIO) exhibits cold anomalies in the boreal summer or fall during E1 Nino development years and warm anomalies in winter or spring following th...The sea surface temperature (SST) anomaly of the eastern Indian Ocean (EIO) exhibits cold anomalies in the boreal summer or fall during E1 Nino development years and warm anomalies in winter or spring following the E1 Nino events. There also tend to be warm anomalies in the boreal summer or fall during La Nina development years and cold anomalies in winter or spring following the La Nina events. The seasonal phase-locking of SST change in the EIO associated with E1 Nino/Southern Oscillation is linked to the variability of convection over the maritime continent, which induces an atmospheric Rossby wave over the EIO. Local air-sea interaction exerts different effects on SST anomalies, depending on the relationship between the Rossby wave and the mean flow related to the seasonal migration of the buffer zone, which shifts across the equator between summer and winter. The summer cold events start with cooling in the Timor Sea, together with increasing easterly flow along the equator. Negative SST anomalies develop near Sumatra, through the interaction between the atmospheric Rossby wave and the underneath sea surface. These SST anomalies are also contributed to by the increased upwelling of the mixed layer and the equatorward temperature advection in the boreal fall. As the buffer zone shifts across the equator towards boreal winter, the anomalous easterly flow tends to weaken the mean flow near the equator, and the EIO SST increases due to the reduction of latent heat flux from the sea surface. As a result, wintertime SST anomalies appear with a uniform and nearly basin-wide pattern beneath the easterly anomalies. These SST anomalies are also caused by the increase in solar radiation associated with the anticyclonic atmospheric Rossby wave over the EIO. Similarly, the physical processes of the summer warm events, which are followed by wintertime cold SST anomalies, can be explained by the changes in atmospheric and oceanic fields with opposite signs to those anomalies described above.展开更多
The mean climatology and the basic characteristics of the ENSO cycle simulated by a coupled model FGCM-1.0 are investigated in this study. Although with some common model biases as in other directly coupled models, FG...The mean climatology and the basic characteristics of the ENSO cycle simulated by a coupled model FGCM-1.0 are investigated in this study. Although with some common model biases as in other directly coupled models, FGCM-1.0 is capable of producing the interannual variability of the tropical Pacific, such as the ENSO phenomenon. The mechanism of the ENSO events in the coupled model can be explained by “delayed oscillator” and “recharge-discharge” hypotheses. Compared to the observations, the simulated ENSO events show larger amplitude with two distinctive types of phase-locking: one with its peak phase-locked to boreal winter and the other to boreal summer. These two types of events have a similar frequency of occurrence, but since the second type of event is seldom observed, it may be related to the biases of the coupled model. Analysis show that the heat content anomalies originate from the central south Pacific in the type of events peaking in boreal summer, which can be attributed to a different background climatology from the normal events. The mechanisms of their evolutions are also discussed.展开更多
The phase and frequency locking of microwave, millimeter wave power combining were analysed and summarized in an all-round way. The master/slave phase locking of cavity oscillators, the peer phase locking of mutually ...The phase and frequency locking of microwave, millimeter wave power combining were analysed and summarized in an all-round way. The master/slave phase locking of cavity oscillators, the peer phase locking of mutually coupled oscillators, and the peer phase locking of ring-connected multiple oscillators were investigated. The results of numerical calculations, and the relations of phase to phase locking model and oscillator parameters were given. And the cavity and space power combining aspects for microwave and millimeter wave were presented.展开更多
We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics...We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator(AFOC),and the PL control is realized by the phase modulator(PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent(SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector(PD) are employed,and a computer and a control circuit based on field programmable gate array(FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.展开更多
The relation of interannual anomaly of East Asian monsoon to the ENSO cycle is investigated in terms of even and odd symmetry analysis over a tropical heating field based on the past 30-year data. Evidence suggests th...The relation of interannual anomaly of East Asian monsoon to the ENSO cycle is investigated in terms of even and odd symmetry analysis over a tropical heating field based on the past 30-year data. Evidence suggests that odd and even symmetry components related to the monsoon and Walker heating, respectively, effectively describe the East Asian monsoon circulation and Pacific Walker analog, with the monsoon intensity index corresponding to its heating vigor and western Pacific Walker heating vigor to ENSO phase change, both types of heating marked by pronounced seasonal variation and phase-locking; the key region for linking monsoon-ENSO interaction is the western Pacific warm pool; the monsoon effect upon ENSO cycle is affected jointly by the seasonal evolution and interannual anomaly of the heating components; the superimposition of an anti-Walker circulation phase produced by interannual winter monsoon perturbation upon a weaker Walker phase on a seasonal basis leads to an El Nino happening in March-April and plays a significant role in maintaining a warm ENSO phase.展开更多
The phase-locking dynamics in 1D and 2D lattices of non-identical coupled circle maps is explored. Aglobal phase locking can be attained via a cascade of clustering processes with the increase of the coupling strength...The phase-locking dynamics in 1D and 2D lattices of non-identical coupled circle maps is explored. Aglobal phase locking can be attained via a cascade of clustering processes with the increase of the coupling strength.Collective spatiotemporal dynamics is observed when a global phase locking is reached. Crisis-induced desynchronizationis found, and its consequent spatiotemporal chaos is studied.展开更多
A low power low phase noise frequency synthesizer with subharmonic injection locking is proposed for ZigBee applications. The PLL is based on a ring VCO to decrease area and production cost. In order to improve phase ...A low power low phase noise frequency synthesizer with subharmonic injection locking is proposed for ZigBee applications. The PLL is based on a ring VCO to decrease area and production cost. In order to improve phase noise performance, a high frequency injection signal of which frequency varies with channel number is used. The circuit is designed in TSMC 0.18 μm CMOS technology and simulated in ADS (Advanced Design System). The phase noise at 3.5 and 10 MHz offsets is -116 and -118 dBc/Hz, respectively, and total circuit consumes 2.2 mA current.展开更多
We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a...We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a wide-band single-path PLL and a narrow-band dual-path PLL in a transient state and a steady state, respectively, by changing the loop bandwidth according to the gain of voltage controlled oscillator (VCO) and the resister of the loop filter. The hybrid PLL is implemented in a 0.18-μm complementary metal oxide semiconductor (CMOS) process with a total die area of 1.4×0.46 mm2. The measured results exhibit a reference spur level of lower than -73 dB with a reference frequency of 10 MHz and a settling time of 20 μs with 40 MHz frequency jump at 2 GHz. The total power consumption of the hybrid PLL is less than 27 mW with a supply voltage of 1.8 V.展开更多
The phase-locking process is studied for high-power gyrotron oscillator driven by an external signal. The phase-locking nonlinear differential equations are derived, and the condition of phase-locking is shown and ana...The phase-locking process is studied for high-power gyrotron oscillator driven by an external signal. The phase-locking nonlinear differential equations are derived, and the condition of phase-locking is shown and analyzed. The phase-locking signal can be introduced after gyrotron oscillates into saturation or before it. Two different ways of inputting signal make markable influence on the phase-locking process, this phenomenon is discussed. In this paper, the numerical calculations and analysis are given for gyrotron TE13 mode.展开更多
A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short...A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short locking time. The voltage-controlled oscillator within the PLL consists of four-stage ring oscillators which are coupled to each other and oscillate with the same frequency and a phase shift of 45. The PLL is fabricated in 0. 1Stem CMOS technology. The measured phase noise of the PLL output at 500kHz offset from the 5GHz center frequency is - 102.6dBc/Hz. The circuit exhibits a capture range of 280MHz and a low RMS jitter of 2.06ps. The power dissipation excluding the output buffers is only 21.6roW at a 1.8V supply.展开更多
Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the p...Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the propagation of the phase-locked truncated Gaussian beam array in a turbulent atmosphere is obtained based on the extended Huygens--Fresnel principle. Power in the diffraction-limited bucket is introduced as the beam quality factor to evaluate the influence of different truncation parameters. The dependence of optimal truncation ratio on the number of beamlets, the intensity of turbulence, propagation distance and laser wavelength is calculated and discussed. It is revealed that the optimal truncation ratio is larger for the laser array that contains more lasers, and the optimal truncation ratio will shift to a larger value with an increase in propagation distance and decrease in intensity of atmosphere turbulence. The optimal truncation ratio is independent of laser wavelength.展开更多
A digital optical phase lock loop(OPLL)is implemented to synchronize the frequency and phase between two external cavity diode lasers(ECDL),generating Raman pulses for atom interferometry.The setup involves all-digita...A digital optical phase lock loop(OPLL)is implemented to synchronize the frequency and phase between two external cavity diode lasers(ECDL),generating Raman pulses for atom interferometry.The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative(PID)loop in locking.The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03 rad2 between the master and slave ECDLs.The lock proves to be stable and robust,and all the locking parameters can be set and optimized on a computer interface with convenience,making the lock adaptable to various setups of laser systems.展开更多
We present an ameliorated arctangent algorithm based on phase-locked loop for digital Doppler signal processing,utilized within the heterodyne detection system. We define the error gain factor given by the approximati...We present an ameliorated arctangent algorithm based on phase-locked loop for digital Doppler signal processing,utilized within the heterodyne detection system. We define the error gain factor given by the approximation of Taylor expansion by means of a comparison of the measured values and true values. Exact expressions are derived for the amplitude error of two in-phase & quadrature signals and the frequency error of the acousto-optic modulator. Numerical simulation results and experimental results make it clear that the dynamic instability of the intermediate frequency signals leads to cumulative errors, which will spiral upward. An improved arctangent algorithm for the heterodyne detection is proposed to eliminate the cumulative errors and harmonic components. Depending on the narrow-band filter, our experiments were performed to realize the detectable displacement of 20 nm at a detection distance of 20 m. The aim of this paper is the demonstration of the optimized arctangent algorithm as a powerful approach to the demodulation algorithm, which will advance the signal-to-noise ratio and measurement accuracy of the heterodyne detection system.展开更多
In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points...In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.展开更多
A multisampling technique was introduced to the phase error detector of Conventional Digital Tanlocked Loop(C DTL). In this new technique a number of samples ( M ) were taken at nonuniform intervals within one peri...A multisampling technique was introduced to the phase error detector of Conventional Digital Tanlocked Loop(C DTL). In this new technique a number of samples ( M ) were taken at nonuniform intervals within one period of the input signal. The novel system is called Multisampling Digital Tanlocked loop(MS DTL). The simulated model on the computer shows that for M =4, the system has a faster locking speed and wider locking in range compared with C DTL.展开更多
A novel technique to obtain injection locked oscillators phase tuning beyond 180° is demonstrated. The idea is to cascade injection locked oscillators together for phase change accumulation. A two stage injection...A novel technique to obtain injection locked oscillators phase tuning beyond 180° is demonstrated. The idea is to cascade injection locked oscillators together for phase change accumulation. A two stage injection locked oscillators can theoretically provide a maximum of 360?phase change within the locking range. This is particularly useful for phased array antenna applications.展开更多
A radiation hard phase-locked loop (PLL) is designed at 2.5 GHz using silicon on sapphire complementary metal-oxide-semiconductor process. Radiation hardness is achieved through improving circuit design without sacr...A radiation hard phase-locked loop (PLL) is designed at 2.5 GHz using silicon on sapphire complementary metal-oxide-semiconductor process. Radiation hardness is achieved through improving circuit design without sacrificing real estate. Stability is guaranteed by a fully self-bias architecture. The lock time of PLL is minimized by maximizing the loop bandwidth. Frequency tuning range of voltage controlled oscillator is significantly enhanced by a novel load configuration. In addition, multiple bias stages, asynchronous frequency divider, and silicon on sapphire process jointly make the proposed PLL more radiation hard. Layout of this PLL is simulated by Cadence Spectre RF under both single event effect and total induced dose effect. Simulation results demonstrate excellent stability, lock time 〈 600 ns, frequency tuning range [1.57 GHz, 3.46 GHz], and jitter 〈 12 ps. Through comparison with PLLs in literatures, the PLL is especially superior in terms of lock time and frequency tuning range performances.展开更多
This paper deals with performance analysis and implementation of a three phase inverter fed induction motor (IM) drive system. The closed loop control scheme of the drive utilizes the Digital Phase Locked Loop (DPLL)....This paper deals with performance analysis and implementation of a three phase inverter fed induction motor (IM) drive system. The closed loop control scheme of the drive utilizes the Digital Phase Locked Loop (DPLL). The DPLL is safely implemented all around the well known integrated circuit DPLL 4046. An ex-perimental verification is carried out on one kw scalar controlled IM system drives for a wide range of speeds and loads appliance. This presents a simple and high performance solution for industrial applications.展开更多
基金funded by National Natural Science Foundation of China, grant numbers 62335006, 62274014, 62235016, 61734006, 61835011, 61991430funded by Key Program of the Chinese Academy of Sciences, grant numbers XDB43000000, QYZDJSSW-JSC027Beijing Municipal Science & Technology Commission, grant number Z221100002722018
文摘We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.
基金This work was supported by The National Key Basic Reserch and Development Project of China(2004CB418303)Project 4023100 of the Major Research Program for Global Change and Regional ResponseNational Natural Science Foundation of China(Grant No.40231005).
文摘The mechanism of the locking of the E1 Nino event onset phase to boreal spring (from April to June) in an intermediate coupled ocean-atmosphere model is investigated. The results show that the seasonal variation of the zonal wind anomaly over the equatorial Pacific associated with the seasonal variation of the ITCZ is the mechanism of the locking in the model. From January to March of the E1 Nino year, the western wind anomaly over the western equatorial Pacific can excite the downwelling Kelvin wave that propagates eastward to the eastern and middle Pacific by April to June. From April to December of the year before the E1 Nifio year, the eastern wind anomaly over the equatorial Pacific forces the downwelling Rossby waves that modulate the ENSO cycle. The modulation and the reflection at the western boundary modulate the time of the transition from the cool to the warm phase to September of the year before the E1 Nifio year and cause the strongest downwelling Kelvin wave from the reflected Rossby waves at the western boundary to arrive in the middle and eastern equatorial Pacific by April to June of the E1 Nino year. The superposition of these two kinds of downwelling Kelvin waves causes the El Nino event to tend to occur from April to June.
文摘The sea surface temperature (SST) anomaly of the eastern Indian Ocean (EIO) exhibits cold anomalies in the boreal summer or fall during E1 Nino development years and warm anomalies in winter or spring following the E1 Nino events. There also tend to be warm anomalies in the boreal summer or fall during La Nina development years and cold anomalies in winter or spring following the La Nina events. The seasonal phase-locking of SST change in the EIO associated with E1 Nino/Southern Oscillation is linked to the variability of convection over the maritime continent, which induces an atmospheric Rossby wave over the EIO. Local air-sea interaction exerts different effects on SST anomalies, depending on the relationship between the Rossby wave and the mean flow related to the seasonal migration of the buffer zone, which shifts across the equator between summer and winter. The summer cold events start with cooling in the Timor Sea, together with increasing easterly flow along the equator. Negative SST anomalies develop near Sumatra, through the interaction between the atmospheric Rossby wave and the underneath sea surface. These SST anomalies are also contributed to by the increased upwelling of the mixed layer and the equatorward temperature advection in the boreal fall. As the buffer zone shifts across the equator towards boreal winter, the anomalous easterly flow tends to weaken the mean flow near the equator, and the EIO SST increases due to the reduction of latent heat flux from the sea surface. As a result, wintertime SST anomalies appear with a uniform and nearly basin-wide pattern beneath the easterly anomalies. These SST anomalies are also caused by the increase in solar radiation associated with the anticyclonic atmospheric Rossby wave over the EIO. Similarly, the physical processes of the summer warm events, which are followed by wintertime cold SST anomalies, can be explained by the changes in atmospheric and oceanic fields with opposite signs to those anomalies described above.
文摘The mean climatology and the basic characteristics of the ENSO cycle simulated by a coupled model FGCM-1.0 are investigated in this study. Although with some common model biases as in other directly coupled models, FGCM-1.0 is capable of producing the interannual variability of the tropical Pacific, such as the ENSO phenomenon. The mechanism of the ENSO events in the coupled model can be explained by “delayed oscillator” and “recharge-discharge” hypotheses. Compared to the observations, the simulated ENSO events show larger amplitude with two distinctive types of phase-locking: one with its peak phase-locked to boreal winter and the other to boreal summer. These two types of events have a similar frequency of occurrence, but since the second type of event is seldom observed, it may be related to the biases of the coupled model. Analysis show that the heat content anomalies originate from the central south Pacific in the type of events peaking in boreal summer, which can be attributed to a different background climatology from the normal events. The mechanisms of their evolutions are also discussed.
基金Supported by the National Natural Science Foundation of China
文摘The phase and frequency locking of microwave, millimeter wave power combining were analysed and summarized in an all-round way. The master/slave phase locking of cavity oscillators, the peer phase locking of mutually coupled oscillators, and the peer phase locking of ring-connected multiple oscillators were investigated. The results of numerical calculations, and the relations of phase to phase locking model and oscillator parameters were given. And the cavity and space power combining aspects for microwave and millimeter wave were presented.
文摘We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator(AFOC),and the PL control is realized by the phase modulator(PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent(SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector(PD) are employed,and a computer and a control circuit based on field programmable gate array(FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.
文摘The relation of interannual anomaly of East Asian monsoon to the ENSO cycle is investigated in terms of even and odd symmetry analysis over a tropical heating field based on the past 30-year data. Evidence suggests that odd and even symmetry components related to the monsoon and Walker heating, respectively, effectively describe the East Asian monsoon circulation and Pacific Walker analog, with the monsoon intensity index corresponding to its heating vigor and western Pacific Walker heating vigor to ENSO phase change, both types of heating marked by pronounced seasonal variation and phase-locking; the key region for linking monsoon-ENSO interaction is the western Pacific warm pool; the monsoon effect upon ENSO cycle is affected jointly by the seasonal evolution and interannual anomaly of the heating components; the superimposition of an anti-Walker circulation phase produced by interannual winter monsoon perturbation upon a weaker Walker phase on a seasonal basis leads to an El Nino happening in March-April and plays a significant role in maintaining a warm ENSO phase.
基金国家自然科学基金,国家重点基础研究发展计划(973计划),高等学校全国优秀博士学位论文作者专项基金,the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education,Institutions of MOE,HYD Foundation,教育部高校骨干教师资助计划
文摘The phase-locking dynamics in 1D and 2D lattices of non-identical coupled circle maps is explored. Aglobal phase locking can be attained via a cascade of clustering processes with the increase of the coupling strength.Collective spatiotemporal dynamics is observed when a global phase locking is reached. Crisis-induced desynchronizationis found, and its consequent spatiotemporal chaos is studied.
文摘A low power low phase noise frequency synthesizer with subharmonic injection locking is proposed for ZigBee applications. The PLL is based on a ring VCO to decrease area and production cost. In order to improve phase noise performance, a high frequency injection signal of which frequency varies with channel number is used. The circuit is designed in TSMC 0.18 μm CMOS technology and simulated in ADS (Advanced Design System). The phase noise at 3.5 and 10 MHz offsets is -116 and -118 dBc/Hz, respectively, and total circuit consumes 2.2 mA current.
基金supported by the National Natural Science Foundation of China(Grant No.61307128)the National Basic Research Program of China(GrantNo.2010CB327505)+1 种基金the Specialized Research Found for the Doctoral Program of Higher Education of China(Grant No.20131101120027)the Basic Research Foundation of Beijing Institute of Technology of China(Grant No.20120542015)
文摘We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a wide-band single-path PLL and a narrow-band dual-path PLL in a transient state and a steady state, respectively, by changing the loop bandwidth according to the gain of voltage controlled oscillator (VCO) and the resister of the loop filter. The hybrid PLL is implemented in a 0.18-μm complementary metal oxide semiconductor (CMOS) process with a total die area of 1.4×0.46 mm2. The measured results exhibit a reference spur level of lower than -73 dB with a reference frequency of 10 MHz and a settling time of 20 μs with 40 MHz frequency jump at 2 GHz. The total power consumption of the hybrid PLL is less than 27 mW with a supply voltage of 1.8 V.
文摘The phase-locking process is studied for high-power gyrotron oscillator driven by an external signal. The phase-locking nonlinear differential equations are derived, and the condition of phase-locking is shown and analyzed. The phase-locking signal can be introduced after gyrotron oscillates into saturation or before it. Two different ways of inputting signal make markable influence on the phase-locking process, this phenomenon is discussed. In this paper, the numerical calculations and analysis are given for gyrotron TE13 mode.
文摘A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short locking time. The voltage-controlled oscillator within the PLL consists of four-stage ring oscillators which are coupled to each other and oscillate with the same frequency and a phase shift of 45. The PLL is fabricated in 0. 1Stem CMOS technology. The measured phase noise of the PLL output at 500kHz offset from the 5GHz center frequency is - 102.6dBc/Hz. The circuit exhibits a capture range of 280MHz and a low RMS jitter of 2.06ps. The power dissipation excluding the output buffers is only 21.6roW at a 1.8V supply.
基金supported by the Innovation Foundation for Postgraduate of Hunan Province
文摘Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the propagation of the phase-locked truncated Gaussian beam array in a turbulent atmosphere is obtained based on the extended Huygens--Fresnel principle. Power in the diffraction-limited bucket is introduced as the beam quality factor to evaluate the influence of different truncation parameters. The dependence of optimal truncation ratio on the number of beamlets, the intensity of turbulence, propagation distance and laser wavelength is calculated and discussed. It is revealed that the optimal truncation ratio is larger for the laser array that contains more lasers, and the optimal truncation ratio will shift to a larger value with an increase in propagation distance and decrease in intensity of atmosphere turbulence. The optimal truncation ratio is independent of laser wavelength.
基金by National Natural Science Foundation of China(60925022 and 10804097)the Research Fund for the Doctoral Program of Higher Education of China(20090101120009)the Fundamental Research Funds for the Central Universities(2010QNA3024)。
文摘A digital optical phase lock loop(OPLL)is implemented to synchronize the frequency and phase between two external cavity diode lasers(ECDL),generating Raman pulses for atom interferometry.The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative(PID)loop in locking.The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03 rad2 between the master and slave ECDLs.The lock proves to be stable and robust,and all the locking parameters can be set and optimized on a computer interface with convenience,making the lock adaptable to various setups of laser systems.
基金supported by Key Research Program of Frontier Science,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH014)the Yong Scientists Fund of the National Natural Science Foundation of China(Grant No.61205143)
文摘We present an ameliorated arctangent algorithm based on phase-locked loop for digital Doppler signal processing,utilized within the heterodyne detection system. We define the error gain factor given by the approximation of Taylor expansion by means of a comparison of the measured values and true values. Exact expressions are derived for the amplitude error of two in-phase & quadrature signals and the frequency error of the acousto-optic modulator. Numerical simulation results and experimental results make it clear that the dynamic instability of the intermediate frequency signals leads to cumulative errors, which will spiral upward. An improved arctangent algorithm for the heterodyne detection is proposed to eliminate the cumulative errors and harmonic components. Depending on the narrow-band filter, our experiments were performed to realize the detectable displacement of 20 nm at a detection distance of 20 m. The aim of this paper is the demonstration of the optimized arctangent algorithm as a powerful approach to the demodulation algorithm, which will advance the signal-to-noise ratio and measurement accuracy of the heterodyne detection system.
基金supported by the National Natural Science Foundation of China(Grant Nos.11773060,11973074,U1831137 and 11703070)National Key Basic Research and Development Program(2018YFA0404702)+1 种基金Shanghai Key Laboratory of Space Navigation and Positioning(3912DZ227330001)the Key Laboratory for Radio Astronomy of CAS。
文摘In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.
文摘A multisampling technique was introduced to the phase error detector of Conventional Digital Tanlocked Loop(C DTL). In this new technique a number of samples ( M ) were taken at nonuniform intervals within one period of the input signal. The novel system is called Multisampling Digital Tanlocked loop(MS DTL). The simulated model on the computer shows that for M =4, the system has a faster locking speed and wider locking in range compared with C DTL.
文摘A novel technique to obtain injection locked oscillators phase tuning beyond 180° is demonstrated. The idea is to cascade injection locked oscillators together for phase change accumulation. A two stage injection locked oscillators can theoretically provide a maximum of 360?phase change within the locking range. This is particularly useful for phased array antenna applications.
文摘A radiation hard phase-locked loop (PLL) is designed at 2.5 GHz using silicon on sapphire complementary metal-oxide-semiconductor process. Radiation hardness is achieved through improving circuit design without sacrificing real estate. Stability is guaranteed by a fully self-bias architecture. The lock time of PLL is minimized by maximizing the loop bandwidth. Frequency tuning range of voltage controlled oscillator is significantly enhanced by a novel load configuration. In addition, multiple bias stages, asynchronous frequency divider, and silicon on sapphire process jointly make the proposed PLL more radiation hard. Layout of this PLL is simulated by Cadence Spectre RF under both single event effect and total induced dose effect. Simulation results demonstrate excellent stability, lock time 〈 600 ns, frequency tuning range [1.57 GHz, 3.46 GHz], and jitter 〈 12 ps. Through comparison with PLLs in literatures, the PLL is especially superior in terms of lock time and frequency tuning range performances.
文摘This paper deals with performance analysis and implementation of a three phase inverter fed induction motor (IM) drive system. The closed loop control scheme of the drive utilizes the Digital Phase Locked Loop (DPLL). The DPLL is safely implemented all around the well known integrated circuit DPLL 4046. An ex-perimental verification is carried out on one kw scalar controlled IM system drives for a wide range of speeds and loads appliance. This presents a simple and high performance solution for industrial applications.