Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)ar...Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science.展开更多
Herein,we have designed a highly active and robust trifunctional electrocatalyst derived from Prussian blue analogs,where Co_(4)N nanoparticles are encapsulated by Fe embedded in N-doped carbon nanocubes to synthesize...Herein,we have designed a highly active and robust trifunctional electrocatalyst derived from Prussian blue analogs,where Co_(4)N nanoparticles are encapsulated by Fe embedded in N-doped carbon nanocubes to synthesize hierarchically structured Co_(4)N@Fe/N-C for rechargeable zinc-air batteries and overall water-splitting electrolyzers.As confirmed by theoretical and experimental results,the high intrinsic oxygen reduction reaction,oxygen evolution reaction,and hydrogen evolution reaction activities of Co_(4)N@Fe/N-C were attributed to the formation of the heterointerface and the modulated local electronic structure.Moreover,Co_(4)N@Fe/N-C induced improvement in these trifunctional electrocatalytic activities owing to the hierarchical hollow nanocube structure,uniform distribution of Co_(4)N,and conductive encapsulation by Fe/N-C.Thus,the rechargeable zinc-air battery with Co_(4)N@Fe/N-C delivers a high specific capacity of 789.9 mAh g^(-1) and stable voltage profiles over 500 cycles.Furthermore,the overall water electrolyzer with Co_(4)N@Fe/N-C achieved better durability and rate performance than that with the Pt/C and IrO2 catalysts,delivering a high Faradaic efficiency of 96.4%.Along with the great potential of the integrated water electrolyzer powered by a zinc-air battery for practical applications,therefore,the mechanistic understanding and active site identification provide valuable insights into the rational design of advanced multifunctional electrocatalysts for energy storage and conversion.展开更多
The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independe...The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independent operation and multi-electrolyzer parallelization,each with distinct advantages and challenges.This study introduces an innovative configuration that incorporates a mutual lye mixer among electrolyzers,establishing a weakly coupled system that combines the advantages of two modes.This approach enables efficient heat utilization for faster hot-startup and maintains heat conservation post-lye interconnection,while preserving the option for independent operation after decoupling.A specialized thermal exchange model is developed for this topology,according to the dynamics of the lye mixer.The study further details startup procedures and proposes optimized control strategies tailored to this structural design.Waste heat from the caustic fully heats up the multiple electrolyzers connected to the lye mixing system,enabling a rapid hot start to enhance the system’s ability to track renewable energy.A control strategy is established to reduce heat loss and increase startup speed,and the optimal valve openings of the diverter valve and the manifold valve are determined.Simulation results indicate a considerable enhancement in operational efficiency,marked by an 18.28%improvement in startup speed and a 6.11%reduction in startup energy consumption inmulti-electrolyzer cluster systems,particularlywhen the systems are synchronized with photovoltaic energy sources.The findings represent a significant stride toward efficient and sustainable hydrogen production,offering a promising path for large-scale integration of renewable energy.展开更多
Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind ...Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers.Therefore,breaking through the technical barriers of AEM electrolyzers is critical.On the basis of the analysis of the electrochemical performance tested in a single cell,electrochemical impedance spectroscopy,and the number of active sites,we evaluated the main technical factors that affect AEM electrolyzers.These factors included catalyst layer manufacturing(e.g.,catalyst,carbon black,and anionic ionomer)loadings,membrane electrode assembly,and testing conditions(e.g.,the KOH concentration in the electrolyte,electrolyte feeding mode,and operating temperature).The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed.The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons,ions,and gas-phase products involved in electrolysis.Based on the study results,the performance and stability of AEM electrolyzers were significantly improved.展开更多
CO_(2) electroreduction(CO_(2) ER)to high value-added chemicals is considered as a promising technology to achieve sustainable carbon neutralization.By virtue of the progressive research in recent years aiming at desi...CO_(2) electroreduction(CO_(2) ER)to high value-added chemicals is considered as a promising technology to achieve sustainable carbon neutralization.By virtue of the progressive research in recent years aiming at design and understanding of catalytic materials and electrolyte systems,the CO_(2) ER performance(such as current density,selectivity,stability,CO_(2) conversion,etc.)has been continually increased.Unfortunately,there has been relatively little attention paid to the large-scale CO 2 electrolyzers,which stand just as one obstacle,alongside series-parallel integration,challenging the practical application of this infant technology.In this review,the latest progress on the structures of low-temperature CO_(2) electrolyzers and scale-up studies was systematically overviewed.The influence of the CO_(2) electrolyzer configurations,such as the flow channel design,gas diffusion electrode(GDE)and ion exchange membrane(IEM),on the CO_(2) ER performance was further discussed.The review could provide inspiration for the design of large-scale CO_(2) electrolyzers so as to accelerate the industrial application of CO_(2) ER technology.展开更多
Electrocatalytic splitting of water by means of renewable energy as the electricity supply is one of the most promising methods for storing green renewable energy as hydrogen. Although two-thirds of the earth’s surfa...Electrocatalytic splitting of water by means of renewable energy as the electricity supply is one of the most promising methods for storing green renewable energy as hydrogen. Although two-thirds of the earth’s surface is covered with water, there is inadequacy of freshwater in most parts of the world. Hence, splitting seawater instead of freshwater could be a truly sustainable alternative. However, direct seawater splitting faces challenges because of the complex composition of seawater. The composition, and hence, the local chemistry of seawater may vary depending on its origin, and in most cases, tracking of the side reactions and standardizing and customizing the catalytic process will be an extra challenge. The corrosion of catalysts and competitive side reactions due to the presence of various inorganic and organic pollutants create challenges for developing stable electro-catalysts. Hence, seawater splitting generally involves a two-step process, i.e., purification of seawater using reverse osmosis and then subsequent fresh water splitting. However, this demands two separate chambers and larger space, and increases complexity of the reactor design. Recently, there have been efforts to directly split seawater without the reverse osmosis step. Herein, we represent the most recent innovative approaches to avoid the two-step process, and compare the potential application of membrane-assisted and membrane-less electrolyzers in direct seawater splitting(DSS). We particularly discuss the device engineering, and propose a novel electrolyzer design strategies for concentration gradient based membrane-less microfluidic electrolyzer.展开更多
Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment ...Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment significantly decreased reactive oxygen species(ROS)and malondialdeh yde(MDA)contents in broccoli sprouts.On the the 8^(th)day,compared to tap water treatment,the the total glucosinolate content of broccoli sprouts with CHEW treatment increased by 10.6%and calcium content was dramatically enhanced from 14.4 mg/g DW to 22.7 mg/g DW.Comparative transcriptome and metabolome analyses revealed that CHEW treatment activated ROS and calcium signaling transduction pathways in broccoli sprouts and they interacted through MAPK cascades.Besides,CHEW treatment not only promoted the biosynthesis of amino acids,but also enhanced the expression of structural genes in glucosinolate synthesis through transcription factors(MYBs,bHLHs,WRKYs,etc.).The results of this study provided new insights into the regulatory network of glucosinolates biosynthesis in broccoli sprouts under CHEW treatment.展开更多
An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which p...An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which provide more active sites and mass transportation channels.The prepared IrSn electrode showed a cell voltage of 1.96 V at 2.0 A cm^-2 with Ir loading as low as 0.294 mg cm^-2.Furthermore,Ir Sn electrode with different anode catalyst loadings was investigated.The IrS n electrode indicates higher mass current and more stable cell voltage than the commercial Ir Black electrode at low loading.展开更多
1.Introduction Hydrogen is an ideal energy carrier to tackle the energy crisis and greenhouse effect,because of its high energy density and low emission.The production,storage and transportation of hydrogen are key fa...1.Introduction Hydrogen is an ideal energy carrier to tackle the energy crisis and greenhouse effect,because of its high energy density and low emission.The production,storage and transportation of hydrogen are key factors to the practical application of hydrogen energy.As the scientific and technological understanding of the electrochemical devices was advancing in the past few decades,water electrolyzers based on the proton exchange membrane (PEM) have attracted much focus for its huge potential on the production of hydrogen via water splitting.PEM electrolyzers use perfluorinated sulfonic acid (PFSA) based membranes as the electrolyte.展开更多
Egypt is bordered by coastal sea2450 km, while incident solar radiation is in the order of magnitudes of 1900-2200 W/m2 in that area of the world. The present work is aimed to assess the hydrogen production from the s...Egypt is bordered by coastal sea2450 km, while incident solar radiation is in the order of magnitudes of 1900-2200 W/m2 in that area of the world. The present work is aimed to assess the hydrogen production from the solar-hydrogen system composed of photovoltaic cell motivated by solar energy and supplies electricity to alkali electrolyzer. The electrolyzer uses sea and Nile water as electrolytes. Indoor tests are done to identify the optimum concentration ratio of the sea water to produce hydrogen. Experimental results showed that stand-alone sea water gives a higher production rate. The results of the outdoor tests revealed the need for about seven units of electrolyzer working with the sea water to produce the same amount of hydrogen that KOH solution electrolyte would provide. However, the efficiency of solar-hydrogen units working with the sea water gives a lower constant efficiency of about 0.13%, followed by Photovoltaic/electrolyzer unit using Nile water of approximately 0.005%. The KOH solution electrolyte provides an efficiency of approximately 8% at solar noon. The sea water is recommended to be used instead of KOH solution in all coming electrolyzers.展开更多
In this paper, the solar panels are used to power an electrolyzer to separate the water into hydrogen and oxygen gas. Theelectrical equivalent circuit for the proton exchange membrane electrolyzer was developed and im...In this paper, the solar panels are used to power an electrolyzer to separate the water into hydrogen and oxygen gas. Theelectrical equivalent circuit for the proton exchange membrane electrolyzer was developed and implemented in MATLAB/Simulinkalong with the atmospheric hydrogen storage tank. The voltage (2 volt) and current (1 ampere) were supplied in a similar manner inorder to compare the simulated and experimental results. The hydrogen amount is calculated to be 7.345 (ml/min A) from the modelas well as the experimental set-up. The experimental and simulation results were matched.展开更多
基金the National Natural Science Foundation of China(No.52125102)the National Key Research and Development Program of China(No.2021YFB4000101)Fundamental Research Funds for t he Central Universities(No.FRF-TP-2021-02C2)。
文摘Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science.
基金National Research Foundation of Korea,Grant/Award Numbers:NRF-2020R1A3B2079803,2021R1A2C2007804。
文摘Herein,we have designed a highly active and robust trifunctional electrocatalyst derived from Prussian blue analogs,where Co_(4)N nanoparticles are encapsulated by Fe embedded in N-doped carbon nanocubes to synthesize hierarchically structured Co_(4)N@Fe/N-C for rechargeable zinc-air batteries and overall water-splitting electrolyzers.As confirmed by theoretical and experimental results,the high intrinsic oxygen reduction reaction,oxygen evolution reaction,and hydrogen evolution reaction activities of Co_(4)N@Fe/N-C were attributed to the formation of the heterointerface and the modulated local electronic structure.Moreover,Co_(4)N@Fe/N-C induced improvement in these trifunctional electrocatalytic activities owing to the hierarchical hollow nanocube structure,uniform distribution of Co_(4)N,and conductive encapsulation by Fe/N-C.Thus,the rechargeable zinc-air battery with Co_(4)N@Fe/N-C delivers a high specific capacity of 789.9 mAh g^(-1) and stable voltage profiles over 500 cycles.Furthermore,the overall water electrolyzer with Co_(4)N@Fe/N-C achieved better durability and rate performance than that with the Pt/C and IrO2 catalysts,delivering a high Faradaic efficiency of 96.4%.Along with the great potential of the integrated water electrolyzer powered by a zinc-air battery for practical applications,therefore,the mechanistic understanding and active site identification provide valuable insights into the rational design of advanced multifunctional electrocatalysts for energy storage and conversion.
基金supported by the Key Technology Research and Application Demonstration Project for Large-Scale Multi-Scenario Water Electrolysis Hydrogen Production(CTGTC/2023-LQ-06).
文摘The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independent operation and multi-electrolyzer parallelization,each with distinct advantages and challenges.This study introduces an innovative configuration that incorporates a mutual lye mixer among electrolyzers,establishing a weakly coupled system that combines the advantages of two modes.This approach enables efficient heat utilization for faster hot-startup and maintains heat conservation post-lye interconnection,while preserving the option for independent operation after decoupling.A specialized thermal exchange model is developed for this topology,according to the dynamics of the lye mixer.The study further details startup procedures and proposes optimized control strategies tailored to this structural design.Waste heat from the caustic fully heats up the multiple electrolyzers connected to the lye mixing system,enabling a rapid hot start to enhance the system’s ability to track renewable energy.A control strategy is established to reduce heat loss and increase startup speed,and the optimal valve openings of the diverter valve and the manifold valve are determined.Simulation results indicate a considerable enhancement in operational efficiency,marked by an 18.28%improvement in startup speed and a 6.11%reduction in startup energy consumption inmulti-electrolyzer cluster systems,particularlywhen the systems are synchronized with photovoltaic energy sources.The findings represent a significant stride toward efficient and sustainable hydrogen production,offering a promising path for large-scale integration of renewable energy.
基金National Natural Science Foundation of China(Nos.52071231,51722103)the Natural Science Foundation of Tianjin(No.19JCJQJC61900)。
文摘Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers.Therefore,breaking through the technical barriers of AEM electrolyzers is critical.On the basis of the analysis of the electrochemical performance tested in a single cell,electrochemical impedance spectroscopy,and the number of active sites,we evaluated the main technical factors that affect AEM electrolyzers.These factors included catalyst layer manufacturing(e.g.,catalyst,carbon black,and anionic ionomer)loadings,membrane electrode assembly,and testing conditions(e.g.,the KOH concentration in the electrolyte,electrolyte feeding mode,and operating temperature).The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed.The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons,ions,and gas-phase products involved in electrolysis.Based on the study results,the performance and stability of AEM electrolyzers were significantly improved.
基金supported by National Key R&D Program of China(2020YFA0710200)the National Natural Science Foundation of China(21838010,22122814)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2018064)State Key Laboratory of Multiphase complex systems,Institute of Process Engineering,Chinese Academy of Sciences(No.MPCS-2022-A-03)Innovation Academy for Green Manufacture Institute,Chinese Academy of Science(IAGM2020C14).
文摘CO_(2) electroreduction(CO_(2) ER)to high value-added chemicals is considered as a promising technology to achieve sustainable carbon neutralization.By virtue of the progressive research in recent years aiming at design and understanding of catalytic materials and electrolyte systems,the CO_(2) ER performance(such as current density,selectivity,stability,CO_(2) conversion,etc.)has been continually increased.Unfortunately,there has been relatively little attention paid to the large-scale CO 2 electrolyzers,which stand just as one obstacle,alongside series-parallel integration,challenging the practical application of this infant technology.In this review,the latest progress on the structures of low-temperature CO_(2) electrolyzers and scale-up studies was systematically overviewed.The influence of the CO_(2) electrolyzer configurations,such as the flow channel design,gas diffusion electrode(GDE)and ion exchange membrane(IEM),on the CO_(2) ER performance was further discussed.The review could provide inspiration for the design of large-scale CO_(2) electrolyzers so as to accelerate the industrial application of CO_(2) ER technology.
基金King Abdullah University of Science and Technology for funding through the funding grant (BAS/1/1413-01-01)the Engineering and Physical Sciences Research Council (EPSRC,EP/V027433/1)+1 种基金the Royal Society (RGSR1211080IESR2212115)。
文摘Electrocatalytic splitting of water by means of renewable energy as the electricity supply is one of the most promising methods for storing green renewable energy as hydrogen. Although two-thirds of the earth’s surface is covered with water, there is inadequacy of freshwater in most parts of the world. Hence, splitting seawater instead of freshwater could be a truly sustainable alternative. However, direct seawater splitting faces challenges because of the complex composition of seawater. The composition, and hence, the local chemistry of seawater may vary depending on its origin, and in most cases, tracking of the side reactions and standardizing and customizing the catalytic process will be an extra challenge. The corrosion of catalysts and competitive side reactions due to the presence of various inorganic and organic pollutants create challenges for developing stable electro-catalysts. Hence, seawater splitting generally involves a two-step process, i.e., purification of seawater using reverse osmosis and then subsequent fresh water splitting. However, this demands two separate chambers and larger space, and increases complexity of the reactor design. Recently, there have been efforts to directly split seawater without the reverse osmosis step. Herein, we represent the most recent innovative approaches to avoid the two-step process, and compare the potential application of membrane-assisted and membrane-less electrolyzers in direct seawater splitting(DSS). We particularly discuss the device engineering, and propose a novel electrolyzer design strategies for concentration gradient based membrane-less microfluidic electrolyzer.
基金supported by the National Natural Science Foundation of China(31972091)。
文摘Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment significantly decreased reactive oxygen species(ROS)and malondialdeh yde(MDA)contents in broccoli sprouts.On the the 8^(th)day,compared to tap water treatment,the the total glucosinolate content of broccoli sprouts with CHEW treatment increased by 10.6%and calcium content was dramatically enhanced from 14.4 mg/g DW to 22.7 mg/g DW.Comparative transcriptome and metabolome analyses revealed that CHEW treatment activated ROS and calcium signaling transduction pathways in broccoli sprouts and they interacted through MAPK cascades.Besides,CHEW treatment not only promoted the biosynthesis of amino acids,but also enhanced the expression of structural genes in glucosinolate synthesis through transcription factors(MYBs,bHLHs,WRKYs,etc.).The results of this study provided new insights into the regulatory network of glucosinolates biosynthesis in broccoli sprouts under CHEW treatment.
基金financially supported by the National Natural Science Foundation of China(U1664259)State Grid Corporation of China(No.SGTYHT/15-JS-191,PEMWE MEA Preparation and degradation mechanism)
文摘An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which provide more active sites and mass transportation channels.The prepared IrSn electrode showed a cell voltage of 1.96 V at 2.0 A cm^-2 with Ir loading as low as 0.294 mg cm^-2.Furthermore,Ir Sn electrode with different anode catalyst loadings was investigated.The IrS n electrode indicates higher mass current and more stable cell voltage than the commercial Ir Black electrode at low loading.
基金supported by the National Key R&D Program of China(2021YFA1500900,2020YFA0710000)the National Natural Science Foundation of China(22172047,22002039,21825201 and U19A2017)+3 种基金the Provincial Natural Science Foundation of Hunan(2021JJ30089,2016TP1009 and 2020JJ5045)the China Postdoctoral Science Foundation(2019M662759,2020M682541 and 2020M682549)the Shenzhen Science and Technology Program(JCYJ20210324122209025)the Changsha Municipal Natural Science Foundation(kq2107008 and kq2007009)。
文摘1.Introduction Hydrogen is an ideal energy carrier to tackle the energy crisis and greenhouse effect,because of its high energy density and low emission.The production,storage and transportation of hydrogen are key factors to the practical application of hydrogen energy.As the scientific and technological understanding of the electrochemical devices was advancing in the past few decades,water electrolyzers based on the proton exchange membrane (PEM) have attracted much focus for its huge potential on the production of hydrogen via water splitting.PEM electrolyzers use perfluorinated sulfonic acid (PFSA) based membranes as the electrolyte.
文摘Egypt is bordered by coastal sea2450 km, while incident solar radiation is in the order of magnitudes of 1900-2200 W/m2 in that area of the world. The present work is aimed to assess the hydrogen production from the solar-hydrogen system composed of photovoltaic cell motivated by solar energy and supplies electricity to alkali electrolyzer. The electrolyzer uses sea and Nile water as electrolytes. Indoor tests are done to identify the optimum concentration ratio of the sea water to produce hydrogen. Experimental results showed that stand-alone sea water gives a higher production rate. The results of the outdoor tests revealed the need for about seven units of electrolyzer working with the sea water to produce the same amount of hydrogen that KOH solution electrolyte would provide. However, the efficiency of solar-hydrogen units working with the sea water gives a lower constant efficiency of about 0.13%, followed by Photovoltaic/electrolyzer unit using Nile water of approximately 0.005%. The KOH solution electrolyte provides an efficiency of approximately 8% at solar noon. The sea water is recommended to be used instead of KOH solution in all coming electrolyzers.
文摘In this paper, the solar panels are used to power an electrolyzer to separate the water into hydrogen and oxygen gas. Theelectrical equivalent circuit for the proton exchange membrane electrolyzer was developed and implemented in MATLAB/Simulinkalong with the atmospheric hydrogen storage tank. The voltage (2 volt) and current (1 ampere) were supplied in a similar manner inorder to compare the simulated and experimental results. The hydrogen amount is calculated to be 7.345 (ml/min A) from the modelas well as the experimental set-up. The experimental and simulation results were matched.