We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon senso...We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.展开更多
A set-up based on a special shadow method, pinhole method, was made and some experiments were done. The results show that this novel method is simple, easy to operate,and suitable for testing large aspherical surfaces...A set-up based on a special shadow method, pinhole method, was made and some experiments were done. The results show that this novel method is simple, easy to operate,and suitable for testing large aspherical surfaces quantitatively.展开更多
【正】Dear Sir,Iam Yong-Sun Ahn,from the Department of Ophthalmology of St.Vincent Hospital of Suwon,Kyungki-do,South Korea.Cataracts are a common problem in eyes with a glaucoma drainage device(GDD),because tube shun...【正】Dear Sir,Iam Yong-Sun Ahn,from the Department of Ophthalmology of St.Vincent Hospital of Suwon,Kyungki-do,South Korea.Cataracts are a common problem in eyes with a glaucoma drainage device(GDD),because tube shunt surgery increases the incidence and progression of cataracts[1].An Ahmed valve,the most commonly inserted GDD,is composed of a silicone tube connected to a flat plate sewn to the sclera,and aqueous humor flows from the展开更多
A surface plasmon resonance (SPR) sensor with a high-order absentee layer on the top of metallic film is proposed. The performance of the SPR sensor with NaCl, MgO, TiO2 or AlAs high-order absentee layer is analyzed...A surface plasmon resonance (SPR) sensor with a high-order absentee layer on the top of metallic film is proposed. The performance of the SPR sensor with NaCl, MgO, TiO2 or AlAs high-order absentee layer is analyzed theoretically. The results indicate that the sensitivity and the full width at half maximum of those SPR sensors decrease with the increasing of the order of absentee layer, but the variation of the figure of merit (FOM) depends on the refractive index of absentee layer. By improving the order of absentee layer with high-refractive-index, the FOM of the SPR sensor can be enhanced. The maximum value of FOM for the SPR sensor with high-order TiO2 (or AlAs) absentee layer is 1.059% (or 2.587%) higher than the one with one-order absentee layer. It is believed the proposed SPR sensor with high-order absentee layer will be helpful for developing the high-performance SPR sensors.展开更多
Although some progress in plasma modification of the polytetrafluoroethylene(PTFE) surface has been made recently,its adhesion strength still needs to be further improved.In this work,the surface of a PTFE sample was ...Although some progress in plasma modification of the polytetrafluoroethylene(PTFE) surface has been made recently,its adhesion strength still needs to be further improved.In this work,the surface of a PTFE sample was treated with a two-step in-situ method.Firstly,the PTFE surface was treated with capacitively coupled Ar plasma to improve its mechanical interlocking performance;then,Ar+NH_(3)+CH_(4) plasma was used to deposit an a-CNx:H cross-linking layer on the PTFE surface to improve the molecular bonding ability.After treatment,a high specific surface area of 2.20 and a low F/C ratio of 0.32 were achieved on the PTFE surface.Its surface free energy was increased significantly and its maximum adhesion strength reached77.1 N·10 mm^(-1),which is 56% higher than that of the single-step Ar plasma-treated sample and32% higher than that of the single-step Ar+CH_(4)+NH_(3) plasma-treated sample.展开更多
The surface flashover of epoxy resin(EP) composites is a pivotal problem in the field of highvoltage insulation.The regulation of the interface between the filler and matrix is an effective means to suppress flashover...The surface flashover of epoxy resin(EP) composites is a pivotal problem in the field of highvoltage insulation.The regulation of the interface between the filler and matrix is an effective means to suppress flashover.In this work,nano ZnO was fluorinated and grafted using lowtemperature plasma technology,and the fluorinated filler was doped into EP to study the DC surface flashover performance of the composite.The results show that plasma fluorination can effectively inhibit the agglomeration by grafting –CFxgroups onto the surface of nano-ZnO particles.The fluorine-containing groups at the interface provide higher charge binding traps and enhance the insulation strength at the interface.At the same time,the interface bond cooperation caused by plasma treatment also promoted the accelerating effect of nano ZnO on charge dissipation.The two effects synergistically improve the surface flashover performance of epoxy composites.When the concentration of fluorinated ZnO filler is 20%,the flashover voltage has the highest increase,which is 31.52% higher than that of pure EP.In addition,fluorinated ZnO can effectively reduce the dielectric constant and dielectric loss of epoxy composites.The interface interaction mechanism was further analyzed using molecular dynamics simulation and density functional theory simulation.展开更多
This work deals with the experimental study of a surface dielectric-barrier discharge,as a part of the ongoing interest in the control of plasma induced electro-fluid dynamic effects(e.g.plasma actuators).The discharg...This work deals with the experimental study of a surface dielectric-barrier discharge,as a part of the ongoing interest in the control of plasma induced electro-fluid dynamic effects(e.g.plasma actuators).The discharge is generated using a plasma reactor consisting of a fused silica plate which is sandwiched between two printed circuit boards where the electrodes are developed.The reactor is driven by narrow high voltage square pulses of asymmetric rising(25 ns)and falling(2.5μs)parts,while the discharge evolution is considered in a temporarily and spatially resolved manner over these pulses.That is,conventional electrical and optical emission analyzes are combined with high resolution optical emission spectroscopy and ns-resolved imaging,unveiling main characteristics of the discharge with a special focus on its propagation along the dielectric-barrier surface.The voltage rising part leads to cathode-directed ionization waves,which propagate with a speed up to 105m s~(-1).The voltage falling part leads to cathode sheath formation on the driven electrode.Τhe polarization of the dielectric barrier appears critical for the discharge dynamics.展开更多
基金Project supported by the National Key Research Program of China(Grant No.2011ZX01015-001)
文摘We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.
文摘A set-up based on a special shadow method, pinhole method, was made and some experiments were done. The results show that this novel method is simple, easy to operate,and suitable for testing large aspherical surfaces quantitatively.
文摘【正】Dear Sir,Iam Yong-Sun Ahn,from the Department of Ophthalmology of St.Vincent Hospital of Suwon,Kyungki-do,South Korea.Cataracts are a common problem in eyes with a glaucoma drainage device(GDD),because tube shunt surgery increases the incidence and progression of cataracts[1].An Ahmed valve,the most commonly inserted GDD,is composed of a silicone tube connected to a flat plate sewn to the sclera,and aqueous humor flows from the
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11547183 and 11547241)the Higher Education and High-quality and World-class Universities,China(Grant No.PY201612)+1 种基金the National Key Research and Development Program of China(Grant No.2016YFB0302003)the Natural Science Foundation of Beijing(Grant No.2162033)
文摘A surface plasmon resonance (SPR) sensor with a high-order absentee layer on the top of metallic film is proposed. The performance of the SPR sensor with NaCl, MgO, TiO2 or AlAs high-order absentee layer is analyzed theoretically. The results indicate that the sensitivity and the full width at half maximum of those SPR sensors decrease with the increasing of the order of absentee layer, but the variation of the figure of merit (FOM) depends on the refractive index of absentee layer. By improving the order of absentee layer with high-refractive-index, the FOM of the SPR sensor can be enhanced. The maximum value of FOM for the SPR sensor with high-order TiO2 (or AlAs) absentee layer is 1.059% (or 2.587%) higher than the one with one-order absentee layer. It is believed the proposed SPR sensor with high-order absentee layer will be helpful for developing the high-performance SPR sensors.
文摘Although some progress in plasma modification of the polytetrafluoroethylene(PTFE) surface has been made recently,its adhesion strength still needs to be further improved.In this work,the surface of a PTFE sample was treated with a two-step in-situ method.Firstly,the PTFE surface was treated with capacitively coupled Ar plasma to improve its mechanical interlocking performance;then,Ar+NH_(3)+CH_(4) plasma was used to deposit an a-CNx:H cross-linking layer on the PTFE surface to improve the molecular bonding ability.After treatment,a high specific surface area of 2.20 and a low F/C ratio of 0.32 were achieved on the PTFE surface.Its surface free energy was increased significantly and its maximum adhesion strength reached77.1 N·10 mm^(-1),which is 56% higher than that of the single-step Ar plasma-treated sample and32% higher than that of the single-step Ar+CH_(4)+NH_(3) plasma-treated sample.
基金supported by Beijing Natural Science Foundation (No. 3222057)National Natural Science Foundation of China (Nos. 52277147 and 52007065)。
文摘The surface flashover of epoxy resin(EP) composites is a pivotal problem in the field of highvoltage insulation.The regulation of the interface between the filler and matrix is an effective means to suppress flashover.In this work,nano ZnO was fluorinated and grafted using lowtemperature plasma technology,and the fluorinated filler was doped into EP to study the DC surface flashover performance of the composite.The results show that plasma fluorination can effectively inhibit the agglomeration by grafting –CFxgroups onto the surface of nano-ZnO particles.The fluorine-containing groups at the interface provide higher charge binding traps and enhance the insulation strength at the interface.At the same time,the interface bond cooperation caused by plasma treatment also promoted the accelerating effect of nano ZnO on charge dissipation.The two effects synergistically improve the surface flashover performance of epoxy composites.When the concentration of fluorinated ZnO filler is 20%,the flashover voltage has the highest increase,which is 31.52% higher than that of pure EP.In addition,fluorinated ZnO can effectively reduce the dielectric constant and dielectric loss of epoxy composites.The interface interaction mechanism was further analyzed using molecular dynamics simulation and density functional theory simulation.
文摘This work deals with the experimental study of a surface dielectric-barrier discharge,as a part of the ongoing interest in the control of plasma induced electro-fluid dynamic effects(e.g.plasma actuators).The discharge is generated using a plasma reactor consisting of a fused silica plate which is sandwiched between two printed circuit boards where the electrodes are developed.The reactor is driven by narrow high voltage square pulses of asymmetric rising(25 ns)and falling(2.5μs)parts,while the discharge evolution is considered in a temporarily and spatially resolved manner over these pulses.That is,conventional electrical and optical emission analyzes are combined with high resolution optical emission spectroscopy and ns-resolved imaging,unveiling main characteristics of the discharge with a special focus on its propagation along the dielectric-barrier surface.The voltage rising part leads to cathode-directed ionization waves,which propagate with a speed up to 105m s~(-1).The voltage falling part leads to cathode sheath formation on the driven electrode.Τhe polarization of the dielectric barrier appears critical for the discharge dynamics.