This paper proposes a one-branch zero-IF receiver topology, which samples the I and Q signals of the modulated RF carrier with one signal path by means of a multiphase local oscillator. The suggested one-branch re- ce...This paper proposes a one-branch zero-IF receiver topology, which samples the I and Q signals of the modulated RF carrier with one signal path by means of a multiphase local oscillator. The suggested one-branch re- ceiver works without matching problem, and it is also capable of cancelling out the flicker noise and DC-offset when the local oscillator is configured to the four-phase mode. The one-branch receiver saves much area and power com- pared with the traditional two-branch ones. All of the advantages above make the one-branch receiver topology a promising architectural candidate for low-power and low-cost RF CMOS receiver designs. Keywords: RF CMOS; zero-IF; flicker noise; image rejection; low-power; IQ matching展开更多
A zero-IF transmitter for Cognitive Radio(CR) application is presented.To effectively reduce the interference between Power Amplifier(PA) and Voltage Controlled Oscillator(VCO),two VCOs are adopted,one is 450 MHz and ...A zero-IF transmitter for Cognitive Radio(CR) application is presented.To effectively reduce the interference between Power Amplifier(PA) and Voltage Controlled Oscillator(VCO),two VCOs are adopted,one is 450 MHz and the other is from 1148 MHz to 1252 MHz with an 8 MHz step,so the frequency of them are different from the operational frequency of PA.The Local Oscillator(LO) of the modulator generated by mixing the signals of the two VCOs has a low phase noise of-82 dBc/Hz with an offset of 1 kHz.The measurement result of the transmitter shows that the Adjacent Channel Power Ratio(ACPR) is less than-47.5 dBc at 27 dBm output,and the Error Vector Magnitude(EVM) is less than 1.7%.展开更多
An RF transceiver composed of a zero-IF receiver and a direct up-conversion transmitter for cognitive radio applications is presented. The adjustable channel filter array in the receiver is used to suppress adjacent c...An RF transceiver composed of a zero-IF receiver and a direct up-conversion transmitter for cognitive radio applications is presented. The adjustable channel filter array in the receiver is used to suppress adjacent channel interference in televisions signal coexistence environments. The low noise amplifier (LNA) with wide dynamic range and high linearity is employed to enhance the anti-interference competence of the zero-IF receiver. Meanwhile, the high linearity power amplifier (PA) .is used to promote the adjacent channel power ratio (ACPR) characteristic of the direct up-conversion transmitter. The measured error vector magnitude (EVM) results show that the anti-interference competence of the zero-IF receiver is dramatically enhanced by employing a channel filter array. The measured ACPR of the direct up-conversion transmitter is -47. 98 dBc on the channel centered at 714 MHz when the output power is 27 dBm.展开更多
A 2.4 GHz radio frequency receiver front end with an on-chip transformer compliant with IEEE 802.11b/g standards is presented. Based on zero-IF receiver architecture, the front end comprises a variable gain common-sou...A 2.4 GHz radio frequency receiver front end with an on-chip transformer compliant with IEEE 802.11b/g standards is presented. Based on zero-IF receiver architecture, the front end comprises a variable gain common-source low noise amplifier with an on-chip transformer as its load and a high linear quadrature folded Gilbert mixer. As the load of the LNA, the on-chip transformer is optimized for lowest resistive loss and highest power gain. The whole front end draws 21 mA from 1.2 V supply, and the measured results show a double side band noise figure of 3.75 dB, -31 dBm IIP3 with 44 dB conversion gain at maximum gain setting. Implemented in 0.13 μm CMOS technology, it occupies a 0.612 mm^2 die size.展开更多
基金Supported by National Natural Science Foundation of China(No.60576026)
文摘This paper proposes a one-branch zero-IF receiver topology, which samples the I and Q signals of the modulated RF carrier with one signal path by means of a multiphase local oscillator. The suggested one-branch re- ceiver works without matching problem, and it is also capable of cancelling out the flicker noise and DC-offset when the local oscillator is configured to the four-phase mode. The one-branch receiver saves much area and power com- pared with the traditional two-branch ones. All of the advantages above make the one-branch receiver topology a promising architectural candidate for low-power and low-cost RF CMOS receiver designs. Keywords: RF CMOS; zero-IF; flicker noise; image rejection; low-power; IQ matching
基金Supported by the National High-Tech Project (No. 2009AA011801)National Natural Science Foundation of China (No. 60621002)
文摘A zero-IF transmitter for Cognitive Radio(CR) application is presented.To effectively reduce the interference between Power Amplifier(PA) and Voltage Controlled Oscillator(VCO),two VCOs are adopted,one is 450 MHz and the other is from 1148 MHz to 1252 MHz with an 8 MHz step,so the frequency of them are different from the operational frequency of PA.The Local Oscillator(LO) of the modulator generated by mixing the signals of the two VCOs has a low phase noise of-82 dBc/Hz with an offset of 1 kHz.The measurement result of the transmitter shows that the Adjacent Channel Power Ratio(ACPR) is less than-47.5 dBc at 27 dBm output,and the Error Vector Magnitude(EVM) is less than 1.7%.
基金The National Natural Science Foundation of China(No.60621002)the National High Technology Research and Development Program of China(863 Program)(No.2009AA011801)
文摘An RF transceiver composed of a zero-IF receiver and a direct up-conversion transmitter for cognitive radio applications is presented. The adjustable channel filter array in the receiver is used to suppress adjacent channel interference in televisions signal coexistence environments. The low noise amplifier (LNA) with wide dynamic range and high linearity is employed to enhance the anti-interference competence of the zero-IF receiver. Meanwhile, the high linearity power amplifier (PA) .is used to promote the adjacent channel power ratio (ACPR) characteristic of the direct up-conversion transmitter. The measured error vector magnitude (EVM) results show that the anti-interference competence of the zero-IF receiver is dramatically enhanced by employing a channel filter array. The measured ACPR of the direct up-conversion transmitter is -47. 98 dBc on the channel centered at 714 MHz when the output power is 27 dBm.
文摘A 2.4 GHz radio frequency receiver front end with an on-chip transformer compliant with IEEE 802.11b/g standards is presented. Based on zero-IF receiver architecture, the front end comprises a variable gain common-source low noise amplifier with an on-chip transformer as its load and a high linear quadrature folded Gilbert mixer. As the load of the LNA, the on-chip transformer is optimized for lowest resistive loss and highest power gain. The whole front end draws 21 mA from 1.2 V supply, and the measured results show a double side band noise figure of 3.75 dB, -31 dBm IIP3 with 44 dB conversion gain at maximum gain setting. Implemented in 0.13 μm CMOS technology, it occupies a 0.612 mm^2 die size.