期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Study of Zero-Inflated Regression Models in a Large-Scale Population Survey of Sub-Health Status and Its Influencing Factors 被引量:1
1
作者 Tao Xu Guangjin Zhu Shaomei Han 《Chinese Medical Sciences Journal》 CAS CSCD 2017年第4期218-225,共8页
Objective Sub-health status has progressively gained more attention from both medical professionals and the publics. Treating the number of sub-health symptoms as count data rather than dichotomous data helps to compl... Objective Sub-health status has progressively gained more attention from both medical professionals and the publics. Treating the number of sub-health symptoms as count data rather than dichotomous data helps to completely and accurately analyze findings in sub-healthy population. This study aims to compare the goodness of fit for count outcome models to identify the optimum model for sub-health study.Methods The sample of the study derived from a large-scale population survey on physiological and psychological constants from 2007 to 2011 in 4 provinces and 2 autonomous regions in China. We constructed four count outcome models using SAS: Poisson model, negative binomial (NB) model, zero-inflated Poisson (ZIP) model and zero-inflated negative binomial (ZINB) model. The number of sub-health symptoms was used as the main outcome measure. The alpha dispersion parameter and O test were used to identify over-dispersed data, and Vuong test was used to evaluate the excessive zero count. The goodness of fit of regression models were determined by predictive probability curves and statistics of likelihood ratio test.Results Of all 78 307 respondents, 38.53% reported no sub-health symptoms. The mean number of sub-health symptoms was 2.98, and the standard deviation was 3.72. The statistic O in over-dispersion test was 720.995 (P<0.001); the estimated alpha was 0.618 (95% CI: 0.600-0.636) comparing ZINB model and ZIP model; Vuong test statistic Z was 45.487. These results indicated over-dispersion of the data and excessive zero counts in this sub-health study. ZINB model had the largest log likelihood (-167 519), the smallest Akaike’s Information Criterion coefficient (335 112) and the smallest Bayesian information criterion coefficient (335455),indicating its best goodness of fit. The predictive probabilities for most counts in ZINB model fitted the observed counts best. The logit section of ZINB model analysis showed that age, sex, occupation, smoking, alcohol drinking, ethnicity and obesity were determinants for presence of sub-health symptoms; the binomial negative section of ZINB model analysis showed that sex, occupation, smoking, alcohol drinking, ethnicity, marital status and obesity had significant effect on the severity of sub-health.Conclusions All tests for goodness of fit and the predictive probability curve produced the same finding that ZINB model was the optimum model for exploring the influencing factors of sub-health symptoms. 展开更多
关键词 zero-inflATED negative binomial regression SUB-HEALTH POPULATION survey
下载PDF
Road Crash Prediction Models: Different Statistical Modeling Approaches
2
作者 Azad Abdulhafedh 《Journal of Transportation Technologies》 2017年第2期190-205,共16页
Road crash prediction models are very useful tools in highway safety, given their potential for determining both the crash frequency occurrence and the degree severity of crashes. Crash frequency refers to the predict... Road crash prediction models are very useful tools in highway safety, given their potential for determining both the crash frequency occurrence and the degree severity of crashes. Crash frequency refers to the prediction of the number of crashes that would occur on a specific road segment or intersection in a time period, while crash severity models generally explore the relationship between crash severity injury and the contributing factors such as driver behavior, vehicle characteristics, roadway geometry, and road-environment conditions. Effective interventions to reduce crash toll include design of safer infrastructure and incorporation of road safety features into land-use and transportation planning;improvement of vehicle safety features;improvement of post-crash care for victims of road crashes;and improvement of driver behavior, such as setting and enforcing laws relating to key risk factors, and raising public awareness. Despite the great efforts that transportation agencies put into preventive measures, the annual number of traffic crashes has not yet significantly decreased. For in-stance, 35,092 traffic fatalities were recorded in the US in 2015, an increase of 7.2% as compared to the previous year. With such a trend, this paper presents an overview of road crash prediction models used by transportation agencies and researchers to gain a better understanding of the techniques used in predicting road accidents and the risk factors that contribute to crash occurrence. 展开更多
关键词 CRASH Prediction models POISSON negative binomial zero-inflATED LOGIT and PROBIT Neural Networks
下载PDF
Statistical Modeling of Malaria Incidences in Apac District, Uganda
3
作者 Ayo Eunice Anthony Wanjoya Livingstone Luboobi 《Open Journal of Statistics》 2017年第6期901-919,共19页
Malaria is a major cause of morbidity and mortality in Apac district, Northern Uganda. Hence, the study aimed to model malaria incidences with respect to climate variables for the period 2007 to 2016 in Apac district.... Malaria is a major cause of morbidity and mortality in Apac district, Northern Uganda. Hence, the study aimed to model malaria incidences with respect to climate variables for the period 2007 to 2016 in Apac district. Data on monthly malaria incidence in Apac district for the period January 2007 to December 2016 was obtained from the Ministry of health, Uganda whereas climate data was obtained from Uganda National Meteorological Authority. Generalized linear models, Poisson and negative binomial regression models were employed to analyze the data. These models were used to fit monthly malaria incidences as a function of monthly rainfall and average temperature. Negative binomial model provided a better fit as compared to the Poisson regression model as indicated by the residual plots and residual deviances. The Pearson correlation test indicated a strong positive association between rainfall and malaria incidences. High malaria incidences were observed in the months of August, September and November. This study showed a significant association between monthly malaria incidence and climate variables that is rainfall and temperature. This study provided useful information for predicting malaria incidence and developing the future warning system. This is an important tool for policy makers to put in place effective control measures for malaria early enough. 展开更多
关键词 MALARIA INCIDENCE Climate VARIABLES POISSON regression negative binomial regression Generalized Linear model Apac DISTRICT
下载PDF
Spatial Evolution and Locational Determinants of High-tech Industries in Beijing 被引量:21
4
作者 ZHANG Xiaoping HUANG Pingting +1 位作者 SUN Lei WANG Zhaohong 《Chinese Geographical Science》 SCIE CSCD 2013年第2期249-260,共12页
Using datasets on high-tech industries in Beijing as empirical studies, this paper attempts to interpret spatial shift of high-tech manufacturing firms and to examine the main determinants that have had the greatest e... Using datasets on high-tech industries in Beijing as empirical studies, this paper attempts to interpret spatial shift of high-tech manufacturing firms and to examine the main determinants that have had the greatest effect on this spatial evolution. We aimed at merging these two aspects by using firm level databases in 1996 and 2010. To explain spatial change of the high-tech firms in Beijing, the Kernel density estimation method was used for hotspot analysis and detection by comparing their locations in 1996 and 2010, through which spatial features and their temporal changes could be approximately plotted. Furthermore, to provide quantitative results, Ripley′s K-function was used as an instrument to reveal spatial shift and the dispersion distance of high-tech manufacturing firms in Beijing. By employing a negative binominal regression model, we evaluated the main determinants that have significantly affected the spatial evolution of high-tech manufacturing firms and compared differential influence of these locational factors on overall high-tech firms and each sub-sectors. The empirical analysis shows that high-tech industries in Beijing, in general, have evident agglomeration characteristics, and that the hotspot has shifted from the central city to suburban areas. In combination with the Ripley index, this study concludes that high-tech firms are now more scattered in metropolitan areas of Beijing as compared with 1996. The results of regression model indicate that the firms′ locational decisions are significantly influenced by the spatial planning and regulation policies of the municipal government. In addition, market processes involving transportation accessibility and agglomeration economy have been found to be important in explaining the dynamics of locational variation of high-tech manufacturing firms in Beijing. Research into how markets and the government interact to determine the location of high-tech manufacturing production will be helpful for policymakers to enact effective policies toward a more efficient urban spatial structure. 展开更多
关键词 high-tech manufacturing firms spatial evolution locational determinant negative binomial regression model BEIJING
下载PDF
The Impacts of Mosquito Density and Meteorological Factors on Dengue Fever Epidemics in Guangzhou, China, 2006-2014: a Time-series Analysis 被引量:12
5
作者 SHEN Ji Chuan LUO Lei +4 位作者 LI Li JING Qin Long OU Chun Quan YANG Zhi Cong CHEN Xiao Guang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第5期321-329,共9页
Objective To explore the associations between the monthly number of dengue fever(DF) cases and possible risk factors in Guangzhou, a subtropical city of China. Methods The monthly number of DF cases, Breteau Index ... Objective To explore the associations between the monthly number of dengue fever(DF) cases and possible risk factors in Guangzhou, a subtropical city of China. Methods The monthly number of DF cases, Breteau Index (BI), and meteorological measures during 2006-2014 recorded in Guangzhou, China, were assessed. A negative binomial regression model was used to evaluate the relationships between BI, meteorological factors, and the monthly number of DF cases. Results A total of 39,697 DF cases were detected in Guangzhou during the study period. DF incidence presented an obvious seasonal pattern, with most cases occurring from June to November. The current month's BI, average temperature (Tare), previous month's minimum temperature (Train), and Tare were positively associated with DF incidence. A threshold of 18.25℃ was found in the relationship between the current month's Tmin and DF incidence. Conclusion Mosquito density, Tove, and Tmin play a critical role in DF transmission in Guangzhou. These findings could be useful in the development of a DF early warning system and assist in effective control and prevention strategies in the DF epidemic. 展开更多
关键词 Breteau index Dengue fever Meteorological factors negative binomial regression model
下载PDF
Safety Analysis of Riding at Intersection Entrance Using Video Recognition Technology 被引量:1
6
作者 Xingjian Xue Linjuan Ge +3 位作者 Longxin Zeng Weiran Li Rui Song Neal N.Xiong 《Computers, Materials & Continua》 SCIE EI 2022年第9期5135-5148,共14页
To study riding safety at intersection entrance,video recognition technology is used to build vehicle-bicycle conflict models based on the Bayesian method.It is analyzed the relationship among the width of nonmotorize... To study riding safety at intersection entrance,video recognition technology is used to build vehicle-bicycle conflict models based on the Bayesian method.It is analyzed the relationship among the width of nonmotorized lanes at the entrance lane of the intersection,the vehicle-bicycle soft isolation form of the entrance lane of intersection,the traffic volume of right-turning motor vehicles and straight-going non-motor vehicles,the speed of right-turning motor vehicles,and straight-going non-motor vehicles,and the conflict between right-turning motor vehicles and straight-going nonmotor vehicles.Due to the traditional statistical methods,to overcome the discreteness of vehicle-bicycle conflict data and the differences of influencing factors,the Bayesian random effect Poisson-log-normal model and random effect negative binomial regression model are established.The results show that the random effect Poisson-log-normal model is better than the negative binomial distribution of random effects;The width of non-motorized lanes,the form of vehicle-bicycle soft isolation,the traffic volume of right-turning motor vehicles,and the coefficients of straight traffic volume obey a normal distribution.Among them,the type of vehicle-bicycle soft isolation facilities and the vehicle-bicycle traffic volumes are significantly positively correlated with the number of vehicle-bicycle conflicts.The width of non-motorized lanes is significantly negatively correlated with the number of vehicle-bicycle conflicts.Peak periods and flat periods,the average speed of right-turning motor vehicles,and the average speed of straight-going non-motor vehicles have no significant influence on the number of vehicle-bicycle conflicts. 展开更多
关键词 Video recognition technology vehicle-bicycle conflict intersection entrance random effect poisson-log-normal model random effect negative binomial regression model
下载PDF
Impact of the Changes in Women’s Characteristics over Time on Antenatal Health Care Utilization in Egypt (2000-2008) 被引量:1
7
作者 Hassan H. M. Zaky Dina M. Armanious Mohamed Ali Hussein 《Open Journal of Obstetrics and Gynecology》 2015年第10期542-552,共11页
Objectives: This study empirically assesses the impact of the changes in women’s characteristics, empowerment, availability and quality of health services on woman’s decision to use antenatal care (ANC) and the freq... Objectives: This study empirically assesses the impact of the changes in women’s characteristics, empowerment, availability and quality of health services on woman’s decision to use antenatal care (ANC) and the frequency of that use during the period 2000-2008. Study Design: The study is a cross-sectional analytical study using 2000 and 2008 Egypt Demographic and Health Surveys. Methods: The assessment of the studied impact is conducted using the Zero-inflated Negative Binomial Regression. In addition, Factor Analysis technique is used to construct some of the explanatory variables such as women’s empowerment, the availability and quality of health services indicators. Results: Utilization of antenatal health care services is greatly improved from 2000 to 2008. Availability of health services is one of the main determinants that affect the number of antenatal care visits in 2008. Wealth index and quality of health services play an important role in raising the level of antenatal care utilization in 2000 and 2008. However, the impact of the terminated pregnancy on receiving ANC increased over time. Conclusions: Further research of the determinants of antenatal health care utilization is needed, using more updated measures of women’s empowerment, availability and quality of health services. In order to improve the provision of antenatal health care services, it is important to understand barriers to antenatal health care utilization. Therefore, it is advisable to collect information from women about the reasons for not receiving antenatal care. 展开更多
关键词 Women’s CHARACTERISTICS ANTENATAL Health Care Women’s EMPOWERMENT zero-inflATED negative binomial regression EGYPT
下载PDF
Predictors of the Aggregate of COVID-19 Cases and Its Case-Fatality: A Global Investigation Involving 120 Countries 被引量:1
8
作者 Sarah Al-Gahtani Mohamed Shoukri Maha Al-Eid 《Open Journal of Statistics》 2021年第2期259-277,共19页
<strong>Objective</strong><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><strong>: </strong>Since the... <strong>Objective</strong><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><strong>: </strong>Since the identification of COVID-19 in December 2019 as a pandemic, over 4500 research papers were published with the term “COVID-19” contained in its title. Many of these reports on the COVID-19 pandemic suggested that the coronavirus was associated with more serious chronic diseases and mortality particularly in patients with chronic diseases regardless of country and age. Therefore, there is a need to understand how common comorbidities and other factors are associated with the risk of death due to COVID-19 infection. Our investigation aims at exploring this relationship. Specifically, our analysis aimed to explore the relationship between the total number of COVID-19 cases and mortality associated with COVID-19 infection accounting for other risk factors. </span><b><span style="font-family:Verdana;">Methods</span></b><span style="font-family:Verdana;">: Due to the presence of over dispersion, the Negative Binomial Regression is used to model the aggregate number of COVID-19 cases. Case-fatality associated with this infection is modeled as an outcome variable using machine learning predictive multivariable regression. The data we used are the COVID-19 cases and associated deaths from the start of the pandemic up to December 02-2020, the day Pfizer was granted approval for their new COVID-19 vaccine. </span><b><span style="font-family:Verdana;">Results</span></b><span style="font-family:Verdana;">: Our analysis found significant regional variation in case fatality. Moreover, the aggregate number of cases had several risk factors including chronic kidney disease, population density and the percentage of gross domestic product spent on healthcare. </span><b><span style="font-family:Verdana;">The Conclusions</span></b><span style="font-family:Verdana;">: There are important regional variations in COVID-19 case fatality. We identified three factors to be significantly correlated with case fatality</span></span></span></span><span style="font-family:Verdana;">.</span> 展开更多
关键词 Intraclass Correlation Coefficient Hierarchical Data Structure negative binomial regression Data Splitting Mixed Effects Linear regression model
下载PDF
The spatial patterns and determinants of internal migration of older adults in China from 1995 to 2015 被引量:1
9
作者 LIU Ye HUANG Cuiying +2 位作者 WU Rongwei PAN Zehan GU Hengyu 《Journal of Geographical Sciences》 SCIE CSCD 2022年第12期2541-2559,共19页
Although China was one of the countries with the fastest-growing aging population in the world,limited scholarly attention has been paid to migration among older adults in China.The full picture of their migration in ... Although China was one of the countries with the fastest-growing aging population in the world,limited scholarly attention has been paid to migration among older adults in China.The full picture of their migration in the entire country over time remains unknown.This study examines the spatial patterns of older interprovincial migration flows and their drivers in China over the period 1995 to 2015,using four waves of census data and intercensal population sample survey data.Results from eigenvector spatial filtering negative binomial regressions indicate that older adults tend to migrate away from low cost-of-living rural areas to high cost-of-living urban and rural areas,moving away from areas with extreme temperature differences.The location of their grandchildren is among the most important attractions.Our findings suggest that family-oriented migration is more common than amenity-led migration among retired Chinese older adults,and the cost-of-living is an indicator of economic opportunities for adult children and the quality of senior care services. 展开更多
关键词 interprovincial migration older adults eigenvector spatial filtering negative binomial regression models China
原文传递
Dynamic road crime risk prediction with urban open data
10
作者 Binbin ZHOU Longbiao CHEN +3 位作者 Fangxun ZHOU Shijian LI Sha ZHAO Gang PAN 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第1期113-125,共13页
Crime risk prediction is helpful for urban safety and citizens’life quality.However,existing crime studies focused on coarse-grained prediction,and usually failed to capture the dynamics of urban crimes.The key chall... Crime risk prediction is helpful for urban safety and citizens’life quality.However,existing crime studies focused on coarse-grained prediction,and usually failed to capture the dynamics of urban crimes.The key challenge is data sparsity,since that 1)not all crimes have been recorded,and 2)crimes usually occur with low frequency.In this paper,we propose an effective framework to predict fine-grained and dynamic crime risks in each road using heterogeneous urban data.First,to address the issue of unreported crimes,we propose a cross-aggregation soft-impute(CASI)method to deal with possible unreported crimes.Then,we use a novel crime risk measurement to capture the crime dynamics from the perspective of influence propagation,taking into consideration of both time-varying and location-varying risk propagation.Based on the dynamically calculated crime risks,we design contextual features(i.e.,POI distributions,taxi mobility,demographic features)from various urban data sources,and propose a zero-inflated negative binomial regression(ZINBR)model to predict future crime risks in roads.The experiments using the real-world data from New York City show that our framework can accurately predict road crime risks,and outperform other baseline methods. 展开更多
关键词 crime prediction road crime risk urban computing data sparsity zero-inflated negative binomial regression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部