There are numerous applications, such as Radar, that leverage wideband technology. However, the presence of noise introduces certain limitations and challenges. It is crucial to harness wideband technology for applica...There are numerous applications, such as Radar, that leverage wideband technology. However, the presence of noise introduces certain limitations and challenges. It is crucial to harness wideband technology for applications demanding the rapid and precise transmission of diverse information from one point to another within a short timeframe. The ability to report a signal without tuning within the input bandwidth stands out as one of the advantages of employing a digital wideband receiver. As indicated, a digital wideband receiver plays a pivotal role in achieving high precision and accuracy. The primary distinction between Analog and Digital Instantaneous Frequency Measurement lies in the fact that analog Instantaneous Frequency Measurement (IFM) receivers have traditionally covered extensive input bandwidths, reporting one accurate frequency per short pulse. In the contemporary landscape, digital IFM systems utilize high-sampling-rate Analog-to-Digital Converters (ADC) along with Hilbert transforms to generate two output channels featuring a 90-degree phase shift. This paper explores the improvement of sensitivity in current digital IFM receivers. The optimization efforts target the Hilbert transform and autocorrelations architectures, aiming to refine the system’s ability to report fine frequencies within a noisy wide bandwidth environment, thereby elevating its overall sensitivity.展开更多
The design of a global positioning system (GPS) software receiver is introduced. This design uses the concept of software radio, and it consists of the following parts: front-end, acquisition, tracking, synchroniza...The design of a global positioning system (GPS) software receiver is introduced. This design uses the concept of software radio, and it consists of the following parts: front-end, acquisition, tracking, synchronization, navigation solution and some assisting modules. In the acquisition module, the acquisition algorithm based on circular correlation is utilized. The input data and the local code are converted into the frequency domain by means of the fast Fourier transform (FFT). After performing circular correlation, the initial phase of the C/A code can be obtained and the cartier frequency can be found in 1 kHz frequency resolution, which is too coarse to use for the tracking loop. In order to improve the frequency resolution, the fine frequency estimation through a phase relationship is then achieved, by which, the frequency resolution is improved dramatically. Experiments show that the inaccuracy of the carrier frequency can be estimated within a few hertz by the fine frequency estimation method, and the fine frequency attained can be directly used for the tracking loop.展开更多
Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments,a novel testing and prediction method based on dual-channel multi-frequenc...Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments,a novel testing and prediction method based on dual-channel multi-frequency is proposed to improve the traditional two-tone test.Firstly,two signal generators are used to generate signals at the radio frequency(RF)by frequency scanning,and then a rapid measurement at the intermediate frequency(IF)output port is carried out to obtain a huge amount of sample data for the subsequent analysis.Secondly,the IF output response data are modeled and analyzed to construct the linear and nonlinear response constraint equations in the frequency domain and prediction models in the power domain,which provide the theoretical criteria for interpreting and predicting electromagnetic susceptibility(EMS)of the receiver.An experiment performed on a radar receiver confirms the reliability of the method proposed in this paper.It shows that the interference of each harmonic frequency and each order to the receiver can be identified and predicted with the sensitivity model.Based on this,fast and comprehensive evaluation and prediction of the receiver’s EMS in complex environment can be efficiently realized.展开更多
This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. First...This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.展开更多
This study investigates how frequency offsets of multitone jamming affect the fast frequencyhopped binary frequency shift keying (FFH/BFSK) self-normalizing (SNZ) receiver under additive white Gaussian noise (AWG...This study investigates how frequency offsets of multitone jamming affect the fast frequencyhopped binary frequency shift keying (FFH/BFSK) self-normalizing (SNZ) receiver under additive white Gaussian noise (AWGN). The average bit-error-rate (BER) expressions of the FFH/BFSK SNZ receiver and the average BER expressions of an FFH/BFSK spread-spectrum (SS) communication system with frequency offsets of multitone jamming for the sake of understanding the simulation results better. Simulation results show that BER performance of the FFH/BFSK SNZ receiver with diversity under the worst case multitone jamming (MTJ) and AWGN suffers from multitone jamming's frequency offsets when the jamming power is moderate, which is validated by several simulations with different frequency offsets configured in multitone jamming. Therefore, an FFH/BFSK SNZ receiver under multitone jamming can be combated with the help of frequency offsets of multitone jamming.展开更多
For the optimization of dynamic range and bandwidth of digital intermediate frequency receiver(DIFR), main factors affecting them and their relationships are studied. Firstly, the DIFR sensitivity, bandwidth, noise fa...For the optimization of dynamic range and bandwidth of digital intermediate frequency receiver(DIFR), main factors affecting them and their relationships are studied. Firstly, the DIFR sensitivity, bandwidth, noise factor of radio frequency (RF) analog front-end (RFAF), and processing gain of intermediate frequency(IF) sampling are analyzed. Secondly, the constraint relationship of the noise factor of RFAF, the signal-to-noise ratio of ADC and the dynamic range of DIFR are studied. The relationship between the dynamic range and the RFAF gain, and that of the extended dynamic range and the RF AGC(automatic gain control) step are educed and simulated. These results can be used as theory foundations and design references for the implementation and optimization of the large dynamic range and wideband DIFR.展开更多
New positioning applications’ availability requirements demand receivers with higher sensitivities and ability to process multiple GNSS signals. Possible applications include acquiring one signal per GNSS constellati...New positioning applications’ availability requirements demand receivers with higher sensitivities and ability to process multiple GNSS signals. Possible applications include acquiring one signal per GNSS constellation in the same frequency band and combining them for increased sensitivity or predicting acquisition of other signals. Frequency domain processing can be used for this purpose, since it benefits from parallel processing capabilities of Fast Fourier Transform (FFT), which can be efficiently implemented in software receivers. On the other hand, long coherent integration times are mainly limited due to large FFT size in receivers using frequency domain techniques. A new method is proposed to address the problems in frequency domain receivers without compromising the resources and execution time. A pre-correlation accumulation (PCA) is proposed to partition the received samples into one-code-period blocks, and to sum them together. As a result, the noise is averaged out and the correlation results will gain more power, provided that the relative phase between the data segments is compensated for. In addition to simplicity, the proposed PCA method enables the use of one-size FFT for all integration times. A post-correlation peak combination is also proposed to remove the need for double buffering. The proposed methods are implemented in a configurable Simulink model, developed for acquiring recorded GNSS signals. For weak signal scenarios, a Spirent GPS simulator is used as a source. Acquisition results for GPS L1 C/A and GLONASS L1OF are shown and the performance of the proposed technique is discussed. The proposed techniques target GNSS receivers using frequency domain processing aiming at accommodating all the GNSS signals, while minimizing resource usage. They also apply to weak signal acquisition in frequency domain to answer the availability demand of today’s GNSS positioning applications.展开更多
Typically, dual-frequency geodetic grade GNSS receivers are utilized for positioning applications that require high accuracy. Single-frequency high grade receivers can be used to minimize the expenses of such dual-fre...Typically, dual-frequency geodetic grade GNSS receivers are utilized for positioning applications that require high accuracy. Single-frequency high grade receivers can be used to minimize the expenses of such dual-frequency receivers. However, user has to consider the resultant positioning accuracy. Since the evolution of low-cost single-frequency (LCSF) receivers is typically cheaper than single-frequency high grade receivers, it is possible to obtain comparable positioning accuracy if the corresponding observables are accurately modelled. In this paper, two LCSF GPS receivers are used to form short baseline. Raw GPS measurements are recorded for several consecutive days. The collected data are used to develop the stochastic model of GPS observables from such receivers. Different functions are tested to determine the best fitting model which is found to be 3 parameters exponential decay function. The new developed model is used to process different data sets and the results are compared against the traditional model. Both results from the newly developed and the traditional models are compared with the reference solution obtained from dual-frequency receiver. It is shown that the newly developed model improves the root-mean-square of the estimated horizontal coordinates by about 10% and improves the root-mean-square of the up component by about 39%.展开更多
A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori infor...A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori information for imaging deeper crustal and mantle structure. Passive-source seismic methods are cost-effective and advantageous for regional-scale imaging of shallow crustal structures compared to active-source methods. Among these passive methods, techniques utilizing receiver function waveforms and/or body-wave amplitude ratios have recently gained prominence due to their relatively high spatial resolution. However, in basin regions, reverberations caused by near-surface unconsolidated sedimentary layers often introduce strong non-uniqueness and uncertainty, limiting the applicability of such methods. To address these challenges, we propose a two-step inversion method that uses multi-frequency P-RF waveforms and P-RF horizontal-to-vertical amplitude ratios. Synthetic tests indicate that our two-step inversion method can mitigate the non-uniqueness of the inversion and enhance the stability of the results. Applying this method to teleseismic data from a linear seismic array across the sedimentary basins in Northeast China, we obtain a high-resolution image of the shallow crustal S-wave velocity structure along the array. Our results reveal significant differences between the basins and mountains. The identification of low-velocity anomalies(<2.8 km s^(-1)) at depths less than 1.0 km beneath the Erlian Basin and less than 2.5 km beneath the Songliao Basin suggests the existence of sedimentary layers. Moreover, the high-velocity anomalies(~3.4–3.8 km s^(-1)) occurring at depths greater than 7 km in the Songliao Basin may reflect mafic intrusions emplaced during the Early Cretaceous. Velocity anomaly distribution in our imaging result is consistent with the location of the major faults, uplifts, and sedimentary depressions, as well as active-source seismic results. This application further validates the effectiveness of our method in constraining the depth-dependent characteristics of the S-wave velocity in basins with unconsolidated sedimentary cover.展开更多
This paper considers the design of iterative receivers for space-frequencyblock-coded orthogonal frequency division multiplexing (SFBC-OFDM) systems in unknown wirelessdispersive fading channels. An iterative joint ch...This paper considers the design of iterative receivers for space-frequencyblock-coded orthogonal frequency division multiplexing (SFBC-OFDM) systems in unknown wirelessdispersive fading channels. An iterative joint channel estimation and symbol detection algorithm isderived. In the algorithm, the channel estimator performs alternately in two modes. During thetraining mode, the channel state information (CSI) is obtained by a discrete-Fourier-transform-basedchannel estimator and the noise variance and covariance matrix of the channel response is estimatedby the proposed method. In the data transmission mode, the CSI and transmitted data is obtainediteratively. In order to suppress the error propagation caused by a random error in identifyingsymbols, a simple error propagation detection criterion is proposed and an adaptive training schemeis applied to suppress the error propagation. Both theoretical analysis and simulation results showthat this algorithm gives better bit-error-rate performance and saves the overhead of OFDM systems.展开更多
In this paper, three existing source spectral models for stochastic finite-fault modeling of ground motion were reviewed. These three models were used to calculate the far-field received energy at a site from a vertic...In this paper, three existing source spectral models for stochastic finite-fault modeling of ground motion were reviewed. These three models were used to calculate the far-field received energy at a site from a vertical fault and the mean spectral ratio over 15 stations of the Northridge earthquake, and then compared. From the comparison, a necessary measure was observed to maintain the far-field received energy independent of subfault size and avoid overestimation of the long- period spectra/level. Two improvements were made to one of the three models (i.e., the model based on dynamic comer frequency) as follows: (i) a new method to compute the subfault comer frequency was proposed, where the subfault comer frequency is determined based on a basic value calculated from the total seismic moment of the entire fault and an increment depending on the seismic moment assigned to the subfault; and (ii) the difference of the radiation energy from each suhfault was considered into the scaling factor. The improved model was also compared with the unimproved model through the far-field received energy and the mean spectral ratio. The comparison proves that the improved model allows the received energy to be more independent of subfault size than the unimproved model, and decreases the overestimation degree of the long-period spectral amplitude.展开更多
Digital receivers have become more and more popular in radar, communication, and electric warfare for the advantages compared with their analog counterparts. But conventional digital receivers have been generally cons...Digital receivers have become more and more popular in radar, communication, and electric warfare for the advantages compared with their analog counterparts. But conventional digital receivers have been generally considered impractical for bandwidth greater than several hundreds MHz. To extend receiver bandwidth, decrease data rate and save hardware resources, three novel structures are proposed. They decimate the data stream prior to mixing and filtering, then process the multiple decimated streams in parallel at a lower rate. Consequently it is feasible to realize wideband receivers on the current ASIC devices. A design example and corresponding simulation results are demonstrated to evaluate the proposed structures.展开更多
This paper presents an RF receiver of zero-Intermediate Frequency(IF) architecture for Cognitive Radio(CR) communication systems.Zero-IF architecture reduce the image reject filter and IF filter,so it is excellent in ...This paper presents an RF receiver of zero-Intermediate Frequency(IF) architecture for Cognitive Radio(CR) communication systems.Zero-IF architecture reduce the image reject filter and IF filter,so it is excellent in low cost,compact volume,and low power dissipation.The receiver employs three digital attenuator and a high gain,high linearity low noise amplifier to achieve wide dynamic range of 70 dB and high receiving sensitivity of-81 dBm.A fully balanced I/Q demodulator and a differential Local Oscillator(LO) chips are used to minimize the negative effects caused by second-order distortion and LO leakage.In order to select an 8 MHz-channel from 14 continuous ones located in UHF band(694-806 MHz) accurately,approach of channel selectivity circuits is proposed.The RF receiver has been designed,fabricated,and test.The measured result shows that the noise figure is 3.4 dB,and the error vector magnitude is 7.5% when the input power is-81 dBm.展开更多
A robust digital receiver based on a matched filter (MF) is proposed for the radio frequency identification (RFID) reader system to enhance the reliability of signal processing in the electronic product code (EPC...A robust digital receiver based on a matched filter (MF) is proposed for the radio frequency identification (RFID) reader system to enhance the reliability of signal processing in the electronic product code (EPC) sensor network (ESN). The performance of the proposed receiver is investigated by examining the anti-collision algorithm in the EPC global Class1 Generation2 protocol. The validity and usefulness are demonstrated by both computer simulations and experiments. Based on the verification results, comparing with the conventional zero crossing detector (ZCD) based receiver, the proposed receiver is very robust against strong amplitude distortions and considerable frequency deviations happening on the backscattered signal from a passive tag.展开更多
Estimation and detection algorithms for orthogonal frequency division multiplexing (OFDM) systems can be de-veloped based on the sum-product algorithms, which operate by message passing in factor graphs. In this paper...Estimation and detection algorithms for orthogonal frequency division multiplexing (OFDM) systems can be de-veloped based on the sum-product algorithms, which operate by message passing in factor graphs. In this paper, we apply the sampling method (Monte Carlo) to factor graphs, and then the integrals in the sum-product algorithm can be approximated by sums, which results in complexity reduction. The blind receiver for OFDM systems can be derived via Sequential Monte Carlo (SMC) in factor graphs, the previous SMC blind receiver can be regarded as the special case of the sum-product algorithms using sampling methods. The previous SMC blind receiver for OFDM systems needs generating samples of the channel vector assuming the channel has an a priori Gaussian distribution. In the newly-built blind receiver, we generate samples of the virtual-pilots instead of the channel vector, with channel vector which can be easily computed based on virtual-pilots. As the size of the vir-tual-pilots space is much smaller than the channel vector space, only small number of samples are necessary, with the blind de-tection being much simpler. Furthermore, only one pilot tone is needed to resolve phase ambiguity and differential encoding is not used anymore. Finally, the results of computer simulations demonstrate that the proposal can perform well while providing sig-nificant complexity reduction.展开更多
A cueing wideband digital Electronic Warfare (EW) receiver is presented. The proposed receiver, which is to measure the instantaneous frequency and bandwidth of the intercept short-duration pulse radar signals that ...A cueing wideband digital Electronic Warfare (EW) receiver is presented. The proposed receiver, which is to measure the instantaneous frequency and bandwidth of the intercept short-duration pulse radar signals that cue and match the corresponding ones, meets the requirements of good sensitivity and dynamic range for EW and can save hardware resources greatly as well. In addition, real-time signal processing, which is the main bottleneck for covering a wide instantaneous frequency band for EW receiver, is better solved in the proposed design structure. The highly efficient implementation and good parameter estimation algorithms are proposed as welL Theoretical analysis and experimental results show that this structure is feasible.展开更多
This paper introduces the design and implementation of 1 D variable cutoff frequency (VCF) digital filters. A lowpass to highpass transformation and a lowpass to bandpass transformation for VCF infinite impulse r...This paper introduces the design and implementation of 1 D variable cutoff frequency (VCF) digital filters. A lowpass to highpass transformation and a lowpass to bandpass transformation for VCF infinite impulse response (IIR) filter are presented. The transformed highpass and bandpass filters are implemented in a network structure in which the cutoff frequencies are variable by adjusting single parameter.展开更多
In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a ...In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a V-shape structure are used to improve the holding of an animal in the coil. The homogeneity and the sensitivity of the RF field in the coil are analysed by theoretical calculation. The size and the shape of the new coil are optimized and validated by simulation through using the finite element method (FEM). Good magnetic resonance (MR) images are achieved on a shepherd dog.展开更多
A design method for parallel processing application on multi-channel low-intermediate-frequency(LIF) digital receiver was presented. It is based on the DSP sub-array with a simple topology and operation timing to eval...A design method for parallel processing application on multi-channel low-intermediate-frequency(LIF) digital receiver was presented. It is based on the DSP sub-array with a simple topology and operation timing to evaluate and determine the processing capability and then construct the parallel processing array for multi-channel signals according to the restriction of operation timing. Using this method, the design of multi-channel digital receiver may be simplified. Finally, a design example was used to show how to apply this method.展开更多
In this paper we propose two iterative algorithms of joint channel estimation and symbol detection for Orthogonal Frequency Division Multiplexing (OFDM) systems. In which, superimposed pilot scheme is adopted and an i...In this paper we propose two iterative algorithms of joint channel estimation and symbol detection for Orthogonal Frequency Division Multiplexing (OFDM) systems. In which, superimposed pilot scheme is adopted and an initial Channel State Information (CSI) is obtained by employing a first-order statistic. In each subsequent iteration, we propose two algorithms to update the CSI. The Mean Square Error (MSE) of channel estimation and Bit Error Rate (BER) performance are given and simulation results demonstrate that the iterative algorithm using method B has good perform-ance approaching the ideal condition.展开更多
文摘There are numerous applications, such as Radar, that leverage wideband technology. However, the presence of noise introduces certain limitations and challenges. It is crucial to harness wideband technology for applications demanding the rapid and precise transmission of diverse information from one point to another within a short timeframe. The ability to report a signal without tuning within the input bandwidth stands out as one of the advantages of employing a digital wideband receiver. As indicated, a digital wideband receiver plays a pivotal role in achieving high precision and accuracy. The primary distinction between Analog and Digital Instantaneous Frequency Measurement lies in the fact that analog Instantaneous Frequency Measurement (IFM) receivers have traditionally covered extensive input bandwidths, reporting one accurate frequency per short pulse. In the contemporary landscape, digital IFM systems utilize high-sampling-rate Analog-to-Digital Converters (ADC) along with Hilbert transforms to generate two output channels featuring a 90-degree phase shift. This paper explores the improvement of sensitivity in current digital IFM receivers. The optimization efforts target the Hilbert transform and autocorrelations architectures, aiming to refine the system’s ability to report fine frequencies within a noisy wide bandwidth environment, thereby elevating its overall sensitivity.
基金Program for New Century Excellent Talents in Universi-ty(No.NCET-06-0462)Excellent Young Teacher Foundation of SoutheastUniversity(No.4022001002).
文摘The design of a global positioning system (GPS) software receiver is introduced. This design uses the concept of software radio, and it consists of the following parts: front-end, acquisition, tracking, synchronization, navigation solution and some assisting modules. In the acquisition module, the acquisition algorithm based on circular correlation is utilized. The input data and the local code are converted into the frequency domain by means of the fast Fourier transform (FFT). After performing circular correlation, the initial phase of the C/A code can be obtained and the cartier frequency can be found in 1 kHz frequency resolution, which is too coarse to use for the tracking loop. In order to improve the frequency resolution, the fine frequency estimation through a phase relationship is then achieved, by which, the frequency resolution is improved dramatically. Experiments show that the inaccuracy of the carrier frequency can be estimated within a few hertz by the fine frequency estimation method, and the fine frequency attained can be directly used for the tracking loop.
基金supported by the National Natural Science Foundation of China(62071473).
文摘Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments,a novel testing and prediction method based on dual-channel multi-frequency is proposed to improve the traditional two-tone test.Firstly,two signal generators are used to generate signals at the radio frequency(RF)by frequency scanning,and then a rapid measurement at the intermediate frequency(IF)output port is carried out to obtain a huge amount of sample data for the subsequent analysis.Secondly,the IF output response data are modeled and analyzed to construct the linear and nonlinear response constraint equations in the frequency domain and prediction models in the power domain,which provide the theoretical criteria for interpreting and predicting electromagnetic susceptibility(EMS)of the receiver.An experiment performed on a radar receiver confirms the reliability of the method proposed in this paper.It shows that the interference of each harmonic frequency and each order to the receiver can be identified and predicted with the sensitivity model.Based on this,fast and comprehensive evaluation and prediction of the receiver’s EMS in complex environment can be efficiently realized.
基金supported by the Program of the Aeronautical Science Foundation of China(2013ZC15003)
文摘This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.
基金supported by the National Natural Science Foundation of China under Grant No. 60502010the National Basic Research Program of China under Grant No. A1420080150the Science Foundation of National Defense Key Laboratory under Grant No.9140C0204010703
文摘This study investigates how frequency offsets of multitone jamming affect the fast frequencyhopped binary frequency shift keying (FFH/BFSK) self-normalizing (SNZ) receiver under additive white Gaussian noise (AWGN). The average bit-error-rate (BER) expressions of the FFH/BFSK SNZ receiver and the average BER expressions of an FFH/BFSK spread-spectrum (SS) communication system with frequency offsets of multitone jamming for the sake of understanding the simulation results better. Simulation results show that BER performance of the FFH/BFSK SNZ receiver with diversity under the worst case multitone jamming (MTJ) and AWGN suffers from multitone jamming's frequency offsets when the jamming power is moderate, which is validated by several simulations with different frequency offsets configured in multitone jamming. Therefore, an FFH/BFSK SNZ receiver under multitone jamming can be combated with the help of frequency offsets of multitone jamming.
文摘For the optimization of dynamic range and bandwidth of digital intermediate frequency receiver(DIFR), main factors affecting them and their relationships are studied. Firstly, the DIFR sensitivity, bandwidth, noise factor of radio frequency (RF) analog front-end (RFAF), and processing gain of intermediate frequency(IF) sampling are analyzed. Secondly, the constraint relationship of the noise factor of RFAF, the signal-to-noise ratio of ADC and the dynamic range of DIFR are studied. The relationship between the dynamic range and the RFAF gain, and that of the extended dynamic range and the RF AGC(automatic gain control) step are educed and simulated. These results can be used as theory foundations and design references for the implementation and optimization of the large dynamic range and wideband DIFR.
文摘New positioning applications’ availability requirements demand receivers with higher sensitivities and ability to process multiple GNSS signals. Possible applications include acquiring one signal per GNSS constellation in the same frequency band and combining them for increased sensitivity or predicting acquisition of other signals. Frequency domain processing can be used for this purpose, since it benefits from parallel processing capabilities of Fast Fourier Transform (FFT), which can be efficiently implemented in software receivers. On the other hand, long coherent integration times are mainly limited due to large FFT size in receivers using frequency domain techniques. A new method is proposed to address the problems in frequency domain receivers without compromising the resources and execution time. A pre-correlation accumulation (PCA) is proposed to partition the received samples into one-code-period blocks, and to sum them together. As a result, the noise is averaged out and the correlation results will gain more power, provided that the relative phase between the data segments is compensated for. In addition to simplicity, the proposed PCA method enables the use of one-size FFT for all integration times. A post-correlation peak combination is also proposed to remove the need for double buffering. The proposed methods are implemented in a configurable Simulink model, developed for acquiring recorded GNSS signals. For weak signal scenarios, a Spirent GPS simulator is used as a source. Acquisition results for GPS L1 C/A and GLONASS L1OF are shown and the performance of the proposed technique is discussed. The proposed techniques target GNSS receivers using frequency domain processing aiming at accommodating all the GNSS signals, while minimizing resource usage. They also apply to weak signal acquisition in frequency domain to answer the availability demand of today’s GNSS positioning applications.
文摘Typically, dual-frequency geodetic grade GNSS receivers are utilized for positioning applications that require high accuracy. Single-frequency high grade receivers can be used to minimize the expenses of such dual-frequency receivers. However, user has to consider the resultant positioning accuracy. Since the evolution of low-cost single-frequency (LCSF) receivers is typically cheaper than single-frequency high grade receivers, it is possible to obtain comparable positioning accuracy if the corresponding observables are accurately modelled. In this paper, two LCSF GPS receivers are used to form short baseline. Raw GPS measurements are recorded for several consecutive days. The collected data are used to develop the stochastic model of GPS observables from such receivers. Different functions are tested to determine the best fitting model which is found to be 3 parameters exponential decay function. The new developed model is used to process different data sets and the results are compared against the traditional model. Both results from the newly developed and the traditional models are compared with the reference solution obtained from dual-frequency receiver. It is shown that the newly developed model improves the root-mean-square of the estimated horizontal coordinates by about 10% and improves the root-mean-square of the up component by about 39%.
基金supported by the National Natural Science Foundation of China(Grant Nos.42004041,42288201,and 91958209)。
文摘A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori information for imaging deeper crustal and mantle structure. Passive-source seismic methods are cost-effective and advantageous for regional-scale imaging of shallow crustal structures compared to active-source methods. Among these passive methods, techniques utilizing receiver function waveforms and/or body-wave amplitude ratios have recently gained prominence due to their relatively high spatial resolution. However, in basin regions, reverberations caused by near-surface unconsolidated sedimentary layers often introduce strong non-uniqueness and uncertainty, limiting the applicability of such methods. To address these challenges, we propose a two-step inversion method that uses multi-frequency P-RF waveforms and P-RF horizontal-to-vertical amplitude ratios. Synthetic tests indicate that our two-step inversion method can mitigate the non-uniqueness of the inversion and enhance the stability of the results. Applying this method to teleseismic data from a linear seismic array across the sedimentary basins in Northeast China, we obtain a high-resolution image of the shallow crustal S-wave velocity structure along the array. Our results reveal significant differences between the basins and mountains. The identification of low-velocity anomalies(<2.8 km s^(-1)) at depths less than 1.0 km beneath the Erlian Basin and less than 2.5 km beneath the Songliao Basin suggests the existence of sedimentary layers. Moreover, the high-velocity anomalies(~3.4–3.8 km s^(-1)) occurring at depths greater than 7 km in the Songliao Basin may reflect mafic intrusions emplaced during the Early Cretaceous. Velocity anomaly distribution in our imaging result is consistent with the location of the major faults, uplifts, and sedimentary depressions, as well as active-source seismic results. This application further validates the effectiveness of our method in constraining the depth-dependent characteristics of the S-wave velocity in basins with unconsolidated sedimentary cover.
文摘This paper considers the design of iterative receivers for space-frequencyblock-coded orthogonal frequency division multiplexing (SFBC-OFDM) systems in unknown wirelessdispersive fading channels. An iterative joint channel estimation and symbol detection algorithm isderived. In the algorithm, the channel estimator performs alternately in two modes. During thetraining mode, the channel state information (CSI) is obtained by a discrete-Fourier-transform-basedchannel estimator and the noise variance and covariance matrix of the channel response is estimatedby the proposed method. In the data transmission mode, the CSI and transmitted data is obtainediteratively. In order to suppress the error propagation caused by a random error in identifyingsymbols, a simple error propagation detection criterion is proposed and an adaptive training schemeis applied to suppress the error propagation. Both theoretical analysis and simulation results showthat this algorithm gives better bit-error-rate performance and saves the overhead of OFDM systems.
基金National Natural Science Foundation of China Under Grant No. 50778058 and 90715038National Key Technology R&D Program Under Contract No. 2006BAC13B02
文摘In this paper, three existing source spectral models for stochastic finite-fault modeling of ground motion were reviewed. These three models were used to calculate the far-field received energy at a site from a vertical fault and the mean spectral ratio over 15 stations of the Northridge earthquake, and then compared. From the comparison, a necessary measure was observed to maintain the far-field received energy independent of subfault size and avoid overestimation of the long- period spectra/level. Two improvements were made to one of the three models (i.e., the model based on dynamic comer frequency) as follows: (i) a new method to compute the subfault comer frequency was proposed, where the subfault comer frequency is determined based on a basic value calculated from the total seismic moment of the entire fault and an increment depending on the seismic moment assigned to the subfault; and (ii) the difference of the radiation energy from each suhfault was considered into the scaling factor. The improved model was also compared with the unimproved model through the far-field received energy and the mean spectral ratio. The comparison proves that the improved model allows the received energy to be more independent of subfault size than the unimproved model, and decreases the overestimation degree of the long-period spectral amplitude.
基金This project was supported by the National Defense I mportant Research Foundation of China(03413070506)
文摘Digital receivers have become more and more popular in radar, communication, and electric warfare for the advantages compared with their analog counterparts. But conventional digital receivers have been generally considered impractical for bandwidth greater than several hundreds MHz. To extend receiver bandwidth, decrease data rate and save hardware resources, three novel structures are proposed. They decimate the data stream prior to mixing and filtering, then process the multiple decimated streams in parallel at a lower rate. Consequently it is feasible to realize wideband receivers on the current ASIC devices. A design example and corresponding simulation results are demonstrated to evaluate the proposed structures.
基金Supported by the National High-Tech Project (No. 2009AA011801)National Natural Science Foundation of China (No. 60621002)
文摘This paper presents an RF receiver of zero-Intermediate Frequency(IF) architecture for Cognitive Radio(CR) communication systems.Zero-IF architecture reduce the image reject filter and IF filter,so it is excellent in low cost,compact volume,and low power dissipation.The receiver employs three digital attenuator and a high gain,high linearity low noise amplifier to achieve wide dynamic range of 70 dB and high receiving sensitivity of-81 dBm.A fully balanced I/Q demodulator and a differential Local Oscillator(LO) chips are used to minimize the negative effects caused by second-order distortion and LO leakage.In order to select an 8 MHz-channel from 14 continuous ones located in UHF band(694-806 MHz) accurately,approach of channel selectivity circuits is proposed.The RF receiver has been designed,fabricated,and test.The measured result shows that the noise figure is 3.4 dB,and the error vector magnitude is 7.5% when the input power is-81 dBm.
基金supported by the Korea Evaluation Institute of Industrial Technology(KEIT),under the R&D Support Program of Ministry of Knowledge Economy,Korea
文摘A robust digital receiver based on a matched filter (MF) is proposed for the radio frequency identification (RFID) reader system to enhance the reliability of signal processing in the electronic product code (EPC) sensor network (ESN). The performance of the proposed receiver is investigated by examining the anti-collision algorithm in the EPC global Class1 Generation2 protocol. The validity and usefulness are demonstrated by both computer simulations and experiments. Based on the verification results, comparing with the conventional zero crossing detector (ZCD) based receiver, the proposed receiver is very robust against strong amplitude distortions and considerable frequency deviations happening on the backscattered signal from a passive tag.
基金Project supported by the National Hi-Tech Research and Develop-ment Program (863) of China (No. 2003AA123310) and the National Natural Science Foundation of China (No. 60332030)
文摘Estimation and detection algorithms for orthogonal frequency division multiplexing (OFDM) systems can be de-veloped based on the sum-product algorithms, which operate by message passing in factor graphs. In this paper, we apply the sampling method (Monte Carlo) to factor graphs, and then the integrals in the sum-product algorithm can be approximated by sums, which results in complexity reduction. The blind receiver for OFDM systems can be derived via Sequential Monte Carlo (SMC) in factor graphs, the previous SMC blind receiver can be regarded as the special case of the sum-product algorithms using sampling methods. The previous SMC blind receiver for OFDM systems needs generating samples of the channel vector assuming the channel has an a priori Gaussian distribution. In the newly-built blind receiver, we generate samples of the virtual-pilots instead of the channel vector, with channel vector which can be easily computed based on virtual-pilots. As the size of the vir-tual-pilots space is much smaller than the channel vector space, only small number of samples are necessary, with the blind de-tection being much simpler. Furthermore, only one pilot tone is needed to resolve phase ambiguity and differential encoding is not used anymore. Finally, the results of computer simulations demonstrate that the proposal can perform well while providing sig-nificant complexity reduction.
基金Supported by the National Defense Pre-research Fund of China
文摘A cueing wideband digital Electronic Warfare (EW) receiver is presented. The proposed receiver, which is to measure the instantaneous frequency and bandwidth of the intercept short-duration pulse radar signals that cue and match the corresponding ones, meets the requirements of good sensitivity and dynamic range for EW and can save hardware resources greatly as well. In addition, real-time signal processing, which is the main bottleneck for covering a wide instantaneous frequency band for EW receiver, is better solved in the proposed design structure. The highly efficient implementation and good parameter estimation algorithms are proposed as welL Theoretical analysis and experimental results show that this structure is feasible.
文摘This paper introduces the design and implementation of 1 D variable cutoff frequency (VCF) digital filters. A lowpass to highpass transformation and a lowpass to bandpass transformation for VCF infinite impulse response (IIR) filter are presented. The transformed highpass and bandpass filters are implemented in a network structure in which the cutoff frequencies are variable by adjusting single parameter.
基金supported by the National Key Technology Research and Development Program of China (Grant No. 001BA210A03)
文摘In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a V-shape structure are used to improve the holding of an animal in the coil. The homogeneity and the sensitivity of the RF field in the coil are analysed by theoretical calculation. The size and the shape of the new coil are optimized and validated by simulation through using the finite element method (FEM). Good magnetic resonance (MR) images are achieved on a shepherd dog.
文摘A design method for parallel processing application on multi-channel low-intermediate-frequency(LIF) digital receiver was presented. It is based on the DSP sub-array with a simple topology and operation timing to evaluate and determine the processing capability and then construct the parallel processing array for multi-channel signals according to the restriction of operation timing. Using this method, the design of multi-channel digital receiver may be simplified. Finally, a design example was used to show how to apply this method.
基金Supported by National "863" Project (No.2002AA123031).
文摘In this paper we propose two iterative algorithms of joint channel estimation and symbol detection for Orthogonal Frequency Division Multiplexing (OFDM) systems. In which, superimposed pilot scheme is adopted and an initial Channel State Information (CSI) is obtained by employing a first-order statistic. In each subsequent iteration, we propose two algorithms to update the CSI. The Mean Square Error (MSE) of channel estimation and Bit Error Rate (BER) performance are given and simulation results demonstrate that the iterative algorithm using method B has good perform-ance approaching the ideal condition.