期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
The Influence of Microscopic Fungi on Chromated Galvanized Zinc Coatings
1
作者 Albinas Lugauskas Igoris Prosycevas +4 位作者 Ausra Selskiene Irina Demcenko Algirdas Narkevicius Dalia Bucinskiene Elena Binkauskiene 《Engineering(科研)》 2010年第12期979-997,共19页
A solution containing Cr(VI), Cr(NO3)3 and its complex with an organic acid as well as several commercial solutions containing Cr(III) complexes with an organic acid and additionally CO2+, F-, SO42- ions were used for... A solution containing Cr(VI), Cr(NO3)3 and its complex with an organic acid as well as several commercial solutions containing Cr(III) complexes with an organic acid and additionally CO2+, F-, SO42- ions were used for the studies. Results of the studies obtained in the following commercial solutions: Likonda 2AT, Cr(NO3)3 + malonic acid;Likonda 3Cr5 and Likonda 3CrMC are discussed. Steel coated with chromated Zn coatings was contaminated by some microscopic fungi. The variety of fungi on chromated plates diminished, however the propagules of fungi did not disappear completely. The Likonda 3Cr5 solution diminishes fungi contamination on chromated steel most effectively. In water used to rinse the surface of chromated plates the number of fungi propagules was detected to be higher as compared to that on the plate surface. The least quantity of fungi propagules was detected in water used to rinse plates coated in the Likonda 3Cr5 solution. The main part of fungi detected on chromated plates treated in the Likonda 3Cr5 solution were the fungi of Cladosporium species (C.herbarum, C.cladosporioides). The latter species also dominated on chromated plates coated with zinc and treated with the other solution. It should be mentioned, that on these plates chromated in this solution, Actinomycetes of the Streptomyces group were abundant. After comparison of surfaces of the plates treated in four solutions it has been determined that the surface of the plates treated in the Likonda 3Cr5 passivation solution and exposed to modelling conditions changed least of all. It has been noticed that on the subject studied white porous rust accumulates, the intensity of this process on the surface studied determines both the probability of corrosion and the resistance of the used safety means to the external factors. 展开更多
关键词 STEEL zinc coating Chromatic Solution Microscopic Fungi INFLUENCE
下载PDF
Growth mechanism for zinc coatings deposited by vacuum thermal evaporation
2
作者 Xiao-pan Qiu Xin Liu +2 位作者 She-ming Jiang Guang-rui Jiang Qi-fu Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第8期1047-1053,共7页
The vacuum thermal evaporation technique was used to simultaneously deposit zinc coatings onto interstitial free steel plates and single-crystal silicon wafers in a high vacuum environment.The effect of substrate temp... The vacuum thermal evaporation technique was used to simultaneously deposit zinc coatings onto interstitial free steel plates and single-crystal silicon wafers in a high vacuum environment.The effect of substrate temperature on the mor-phology and crystal orientation of zinc coatings was investigated.When the substrate temperature was 25 and 50℃,the zinc crystallites were plate-like and grew under a particular angle to the substrate surface.After the substrate was heated to 100℃,the zinc crystallites were regular hexagonal and arranged almost parallel to the substrate surface.In addition,observation of pure zinc coatings with different thicknesses showed that the growth of zinc coating was mainly in the Volmer-Weber mode.When the process parameters were appropriate,the zinc coating was composed of closely arranged columnar crystallites,and the crystallites grew preferentially along[0001]direction. 展开更多
关键词 Vacuum thermal evaporation zinc coating Deposition temperature Growth mechanism
原文传递
Properties of Al/Conductive Coating/α-PbO2-CeO2-TiO2/β-PbO2-WC-ZrO2 Composite Anode for Zinc Electrowinning 被引量:2
3
作者 杨健 陈步明 +3 位作者 GUO Zhongcheng HUANG Hui XU Ruidong JIN Bingjie 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期538-546,共9页
The properties of Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC-ZrO2 composite anode for zinc electrowinning were investigated. The electrochemical performance was studied by Tafel polarization curves(Tafel), e... The properties of Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC-ZrO2 composite anode for zinc electrowinning were investigated. The electrochemical performance was studied by Tafel polarization curves(Tafel), electrochemical impedance spectroscopy(EIS) and corrosion rate obtained in an acidic zinc sulfate electrolyte solution. Scanning electron microscopy(SEM), X-ray diffraction(XRD), and energy dispersive X-ray spectroscopy(EDXS) were used to observe the microstructural features of coating. Anodes of Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2, Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC, Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-ZrO2, and Pb-1%Ag anodes were also researched. The results indicated that the Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC-ZrO2 showed the best catalytic activity and corrosion resistant performance; the intensity of diffraction peak exhibited the highest value as well as a new PbWO4 phase; the content of WC and ZrO2 in coating showed the highest value as well as the finest grain size. 展开更多
关键词 coating composite anode corrosion resistant electrocatalytic activity zinc electrowinning
下载PDF
Corrosion Test of the Steel Plate in a WJ-8 Fastener for High Speed Rail
4
作者 Zhiyong Wang Zhiping Zeng Hualiang (Harry) Teng 《Journal of Transportation Technologies》 2024年第1期16-30,共15页
It was found that the steel plate in the composite plate in the WJ-8 fastener used in high speed rail is rusty. The objective of this study is to test the zinc coating of the steel plate. A literature review was condu... It was found that the steel plate in the composite plate in the WJ-8 fastener used in high speed rail is rusty. The objective of this study is to test the zinc coating of the steel plate. A literature review was conducted to identify the zinc coating techniques, and the companies that can provide different coating service was identified. A salt fog chamber was built that was in compliance with the ANSI B117 code, and the steel plates that were coated by the identified companies were tested using the salt fog chamber. The results indicated that the coating technique that had the best performance in preventing corrosion was the Greenkote plates with passivation. The galvanized option had the roughest coating layer, and it was the most reactive in the salt water solution. This makes it non-ideal for the dynamic rail environment because the increased friction of the plate could damage the supports, especially during extreme temperatures that would cause the rail to expand or contract. Greenkote with Phosphate and ArmorGalv also provided increased corrosion prevention with a smooth, strong finish, but it had more rust on the surface area than the Greenkote with ELU passivation. The ArmorGalv sample had more rust on the surface area than the Greenkote samples. This may not be a weakness in the ArmorGalv process;rather, it likely was the result of this particular sample not having the added protection of a colored coating. 展开更多
关键词 Steel Plate for High Speed Rail Fastening Steel Corrosion zinc coating Salt-Fog Chamber
下载PDF
Review on the phosphate-based conversion coatings of magnesium and its alloys 被引量:2
5
作者 Debasis Saran Atul Kumar +2 位作者 Sivaiah Bathula David Klaumünzer Kisor K Sahu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第7期1435-1452,共18页
Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge ... Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge is their high susceptibility to corrosion,thereby limiting their usability.The considerably lower reduction potential of Mg compared to other metals makes it vulnerable to galvanic coupling.The oxide layer on Mg offers little corrosion resistance because of its high porosity,inhomogeneity,and fragility.Chemical conversion coatings(CCs)belong to a distinct class because of underlying chemical reactions,which are fundamentally different from other types of coating.Typically,a CC acts as an intermediate sandwich layer between the base metal and an aesthetic paint.Although chromate CCs offer superior performance compared to phosphate CCs,yet still they release carcinogenic hexavalent chromium ions(Cr^(6+));therefore,their use is prohibited in most European nations under the Registration,Evaluation,Authorization and Restriction of Chemicals legislation framework.Phosphate-based CCs are a cost-effective and environment-friendly alternative.Accordingly,this review primarily focuses on different types of phosphate-based CCs,such as zinc,calcium,Mg,vanadium,manganese,and permanganate.It discusses their mechanisms,current status,pretreatment practices,and the influence of various parameters-such as pH,temperature,immersion time,and bath composition-on the coating performance.Some challenges associated with phosphate CCs and future research directions are also elaborated. 展开更多
关键词 phosphate conversion coatings magnesium alloys CORROSION zinc phosphate conversion coatings calcium phosphate conversion coatings magnesium phosphate conversion coatings
下载PDF
Investigation on a Non-cyanide Plating Process of Ni-P Coating on Magnesium Alloy AZ91D 被引量:1
6
作者 BonianHU GangYU +2 位作者 Jueling YingLI LiyuanYE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第3期301-306,共6页
In this research we presented a non-cyanide plating process of Ni-P alloy coating on Mg alloy AZ91D. By applying a new process flow of electroless nickel plating in which zinc coating is used as transition of Ni-P coa... In this research we presented a non-cyanide plating process of Ni-P alloy coating on Mg alloy AZ91D. By applying a new process flow of electroless nickel plating in which zinc coating is used as transition of Ni-P coating on Mg alloy AZ91D, the process of copper transition coating plated in the cyanides bath can be replaced. A new bath composed of NiSO4 was established by orthogonal test. The results show that zinc transition coating can increase the adhesion and protect the Mg alloy substrate from the bath corrosion. The optimal plating bath composition is NiSO4·6H2O 20 g/L, NaH2PO2·H2O20g/L and C6H8O7·H2O 2.5 g/L, and optimal bath acidity and optimal plating temperature are pH 4.0 and 95℃, respectively. The present process flow is composed of ultrasonic cleaning→alkaline cleaning→acid pickling→activation→double immersing zinc→electroplating zinc→electroless nickel plating→passivation treatment. The present non-cyanide process of electroless nickel plating is harmless to our surroundings and Ni-P coating on Mg alloy AZ91D produced by present process possesses good adhesion and corrosion resistance. 展开更多
关键词 Mg alloy AZ91D Ni-P alloy coating zinc transition coating Non-cyanide plating process
下载PDF
Joint Performance for Laser Cutting-welding of Zinc-coated Tailored Blanks
7
作者 王春明 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第4期46-49,共4页
The process of laser bull welding of zinc-coated steel(SGCD3 and WLZn)blanks was presented.whose edges were prepared by laser cutting.The properties of the butt joints.such as tensile strength.bending,stamping.weld ... The process of laser bull welding of zinc-coated steel(SGCD3 and WLZn)blanks was presented.whose edges were prepared by laser cutting.The properties of the butt joints.such as tensile strength.bending,stamping.weld shape,and corrosion-resisant were tested.The experiments of laser cutting and welding were carried ont on a custom-made system designed.which is a set of equipment for wide sheet butt welding based on a laser cutting-welding combination process.The experiments proved the technological feasibility of laser butt welding for thin zinc coated steel sheets whose edges were prepared by laser cutting on the same equipment. 展开更多
关键词 laser welding tailored blanks zinc coated steel blanks laser cutting
下载PDF
STUDIES OF LOW-CONCENTRATION CHROMATE PASSIVE FILM FOR ZINC-BASED ALLOY COATED STEEL WIRES
8
作者 Li, Y. Wang, H.R. +1 位作者 Feng, F.L. Wei, X.J. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期736-738,共3页
The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the comp... The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the composition of such chromate passive film was S 5 5, Na 3 4, C 11 8, Ti 7 9, O 41 6, Cr 13 7, Zn 16 0. 展开更多
关键词 chromate passive film zinc based alloy coating XPS AES
下载PDF
Study on phosphating treatment of aluminum alloy:role of yttrium oxide 被引量:2
9
作者 张圣麟 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期469-473,共5页
Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (... Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2·4H2O (hopeite) and AlPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by polarization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s. 展开更多
关键词 yttrium oxide zinc phosphate coating aluminum alloy nucleation agent ACCELERATOR rare earths
下载PDF
Synthesis and Characterization of Nano-sized Zinc Oxide Coating on Cellulosic Fibers: Photoactivity and Flame-retardancy Study
10
作者 Fallah, Moafi Hadi Fallah, Shojaie Abdollah Zanianchi, Mohammad Ali 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2011年第6期1239-1245,共7页
We have investigated the effect of zinc oxide as a photocatalyst and durable flame-retardant on cellulosic fibers. Zinc oxide nanocrystals were successfully synthesized and deposited onto cellulosic fibers using sol-g... We have investigated the effect of zinc oxide as a photocatalyst and durable flame-retardant on cellulosic fibers. Zinc oxide nanocrystals were successfully synthesized and deposited onto cellulosic fibers using sol-gel process at low temperature. The samples were characterized by means of several techniques such as scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogra- vimetric analysis. The photocatalytic activity was tested by measuring the photodegradation of methylene blue under UV-Vis illumination. Moreover, flame-retardancy was tested by vertical flame spread test. The optimum add-on value for donating flame-retardancy onto cellulosic fabric was obtained to be in the range of 15.24 to 23.20 g of the ZnO per 100 g of fabric. Thermogravimetric analysis of pure and flame-retarded samples were accomplished and discussed. The results obtained are in agreement with Wall effect theory and Coating theory. The originality of this work on introducing photoactive flame-retarded fibers is highly valuable for industrial implementation. 展开更多
关键词 cellulosic fiber FLAME-RETARDANCY photocatalytic self-cleaning zinc oxide coating nanoparticle sol-gel processes
原文传递
Optimising the corrosion performance of pre-painted steels
11
作者 Rajiv EDAVAN Richard KOPINSKI 《Baosteel Technical Research》 CAS 2010年第S1期43-,共1页
Pre-painted steel is one of the most important structural material of the 20th century well known for its excellent corrosion resistance and wide ranging applications.A typical pre-painted steel usually consists of a ... Pre-painted steel is one of the most important structural material of the 20th century well known for its excellent corrosion resistance and wide ranging applications.A typical pre-painted steel usually consists of a layer of metal coating system,preferably zinc or zinc alloy coating and a combination of layers of inorganic - organic coatings usually referred to as paint system.The corrosion resistance of the metal coating as well as the paint system may vary considerably based on their composition and the environment.For optimal corrosion performance of pre-painted steel,a judicious selection of both metal and inorganic-organic coating systems are essential.This paper reviews different types of possible corrosion issues in pre-painted steels and methods to optimise their performance. 展开更多
关键词 pre-painted steel hot dip coated steels zinc and zinc alloy coatings corrosion performance
下载PDF
Influencing mechanism of pre-existing nanoscale Al5Fe2 phase on Mg-Fe interface in friction stir spot welded Al-free ZK60-Q235 joint 被引量:2
12
作者 R.Z.Xu Q.Yang +3 位作者 D.R.Ni B.L.Xiao C.Z.Liu Z.Y.Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第7期220-228,共9页
Al-free ZK60 magnesium (Mg) alloy sheet was selected as substrate material of Mg-steel pinless friction stir spot welding (FSSW), avoiding the effect of the Al element in the substrate on the alloying reaction of Mg-i... Al-free ZK60 magnesium (Mg) alloy sheet was selected as substrate material of Mg-steel pinless friction stir spot welding (FSSW), avoiding the effect of the Al element in the substrate on the alloying reaction of Mg-iron (Fe) interface. The sound FSSW joint of ZK60 Mg alloy and Q235 steel with a hot-dipped aluminum (Al)-containing zinc (Zn) coating was successfully realized. The detailed microstructural examinations proved that Al5Fe2 phase at the Mg-Fe interface came from the pre-existing Al5Fe2 phase in the coating and acted as the transition layer for promoting the metallurgical bonding of Mg and Fe. The interfaces with well-matched lattice sites among Fe, Al5Fe2 and Mg were formed during FSSW. A low energy interface with good match of lattice sites ((002)Al5Fe2//(110)Fe, [110]Al5Fe2//[113]Fe) between Al5Fe2 and Fe was identified. For the interface between Al5Fe2 and Mg, an orientation relationship of (622)Al5Fe2//(3112)Mgand[158]Al5Fe2//[2423]Mg was observed. The tensile-shear load of the ZK60-steel joint could reach 4.6 kN. Moreover, the joint fracture occurred at the interface between the Al5Fe2 layer and the Mg alloy substrate, suggesting the brittle fracture characteristic. 展开更多
关键词 Dissimilar welding Friction stir spot welding Magnesium alloys STEELS zinc coating
原文传递
Evolution of real area of contact due to combined normal load and sub-surface straining in sheet metal 被引量:1
13
作者 Meghshyam SHISODE Javad HAZRAT +2 位作者 Tanmaya MISHRA Matthijn DE ROOIJ Ton VAN DEN BOOGAAED 《Friction》 SCIE EI CAS CSCD 2021年第4期840-855,共16页
Understanding asperity flattening is vital for a reliable macro-scale modeling of friction and wear.In sheet metal forming processes,sheet surface asperities are deformed due to contact forces between the tools and th... Understanding asperity flattening is vital for a reliable macro-scale modeling of friction and wear.In sheet metal forming processes,sheet surface asperities are deformed due to contact forces between the tools and the workpiece.In addition,as the sheet metal is strained while retaining the normal load,the asperity deformation increases significantly.Deformation of the asperities determines the real area of contact which influences the friction and wear at the tool-sheet metal contact.The real area of contact between two contacting rough surfaces depends on type of loading,material behavior,and topography of the contacting surfaces.In this study,an experimental setup is developed to investigate the effect of a combined normal load and sub-surface strain on real area of contact.Uncoated and zinc coated steel sheets(GI)with different coating thicknesses,surface topographies,and substrate materials are used in the experimental study.Finite element(FE)analyses are performed on measured surface profiles to further analyze the behavior observed in the experiments and to understand the effect of surface topography,and coating thickness on the evolution of the real area of contact.Finally,an analytical model is presented to determine the real area contact under combined normal load and sub-surface strain.The results show that accounting for combined normal load and sub-surface straining effects is necessary for accurate predictions of the real area of contact. 展开更多
关键词 asperity flattening real area of contact sub-surface strain zinc coating sheet metal forming
原文传递
Effect of Al22Si/ZL102 bimetal interface fabricated by extrusion at neareutectic temperature 被引量:1
14
作者 Jun-feng Zhao Shan-guang Liu +5 位作者 Xiao-guang Yuan Jian-fei Sun Hong-jun Huang Fu-yang Cao Hong-xian Shen Yu-long Wang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第4期469-474,共6页
The Al22Si/ZL102 bimetal was designed and prepared by extrusion at near-eutectic temperature.The properties and fracture behaviors of different surface treatments between oxide film and zinc coating were compared betw... The Al22Si/ZL102 bimetal was designed and prepared by extrusion at near-eutectic temperature.The properties and fracture behaviors of different surface treatments between oxide film and zinc coating were compared between the Al22 Si and ZL102 bimetal.The average bonding strength of bimetal with intermittent oxide film interface was about 89.3MPa,which is higher than that of the bimetal fabricated by zinc coating method(about 76.3MPa).During the process of extrusion,the oxidation film was extruded to crush and the metal was extruded through the micro-cracks of the oxidation film,then the two surfaces were joined together.Altogether,the results showed that extrusion at near-eutectic temperature is favorable for achieving a high-quality metallurgical bonded interface. 展开更多
关键词 Bimetal Oxide film Interface bonding strength zinc coating
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部