The leaching behavior of main metallic sulphides in zinc concentrate under atmospheric oxygen-rich direct leaching conditions was studied through mineralogical analysis. The results show that the sulphides dissolve ob...The leaching behavior of main metallic sulphides in zinc concentrate under atmospheric oxygen-rich direct leaching conditions was studied through mineralogical analysis. The results show that the sulphides dissolve obviously except pyrite. Based on the relationship between elemental sulfur and the residual sulphides in the leaching residue, the dissolution of sphalerite, chalcopyrite, covellite and galena is assumed to follow the indirect oxidation reactions, where the acidic dissolution takes place firstly and then the released H2S transfers from the mineral surface into bulk solution and is further oxidized into elemental sulfur. The interface chemical reaction is further supposed as the controlling step in the leaching of these sulphides. The direct electrochemical oxidation reactions are assumed to contribute to the dissolution of pyrrhotite, which is controlled by the diffusion through elemental sulfur layer.展开更多
A hydrometallurgical process for indium extraction and ferric oxide powder preparation for soft magnetic ferrite material was developed. Using reduction lixivium from high-acid reductive leaching of zinc oxide calcine...A hydrometallurgical process for indium extraction and ferric oxide powder preparation for soft magnetic ferrite material was developed. Using reduction lixivium from high-acid reductive leaching of zinc oxide calcine as raw solution, copper and indium were firstly recovered by iron powder cementation and neutralization. The recovery ratios of Cu and In are 99% and 95%, respectively. Some harmful impurities that have negative influences on magnetic properties of soft magnetic ferrite material are deeply removed with sulfidization purification and neutral flocculation method. Under the optimum conditions, the content of impurities like Cu, Pb, As, Al in pure Zn-Fe sulfate solution are less than 0.004 g/L, but those of Cd, Si, Ca and Mg are relatively high. Finally, thermal precipitation of iron is carried out at 210 ℃ for 1.5 h. The precipitation ratio of Fe is 93.33%. Compared with the quality standard of ferric oxide for soft magnetic ferrite materials, the contents of Al and Mg in obtained ferric oxide powder meet the requirement of YHT1 level of ferric oxide, and those of Si, Ca meet the requirement of YHT3 level of ferric oxide. XRD and SEM characterizations confirm that the obtained sample is well-dispersed spindle spherule with regular a-Fe2O3 crystal structure. The length-to-diameter ratio ofa-Fe2O3 powder is (3-4):1 with an average particle size of 0.5 μm.展开更多
Effects of particle size of the zinc sulfide concentrate,leaching temperature,solid-to-liquid ratio and additive amount on pressure acid leaching process of the zinc sulfide concentrate were studied.The results indica...Effects of particle size of the zinc sulfide concentrate,leaching temperature,solid-to-liquid ratio and additive amount on pressure acid leaching process of the zinc sulfide concentrate were studied.The results indicate that the additive can improve the reaction kinetics and the conversion rate.And sulfur can be successfully separated from the zinc sulfide concentrate as elemental sulfur.The reasonable experiment parameters are obtained as follows:the leaching temperature 150℃,oxygen partial pressure 1 MPa,additive amount 1%,solid-to-liquid ratio 1:4,leaching time 2 h,initial sulfuric acid concentration 15%,and particle size less than 44μm.Under the optimum conditions,the leaching rate of the zinc can reach 95%and the reduction rate of the sulfur can reach 90%.展开更多
Zinc concentrate with high gallium content is one of the main resources of gallium.The gallium presents in the form of isomorphism in tetrahedron coordination with sulfur in sphalerite.The research was to investigate ...Zinc concentrate with high gallium content is one of the main resources of gallium.The gallium presents in the form of isomorphism in tetrahedron coordination with sulfur in sphalerite.The research was to investigate the amenability of zinc concentrate with high gallium to pressure oxygen leaching.The particle size,sulfuric acid concentration,oxygen partial pressure,additive amount,and time of reaction were studied.The extraction yields of gallium and zinc are 86%and 98%,respectively.The optimal condition is 100 g of zinc concentrate with particle size smaller than 38 lm,sulfuric acid concentration150 g L-1,leaching temperature 150℃,leaching time120 min,oxygen partial pressure 0.7 MPa,additive amount of 0.2 wt%.展开更多
The influence of the concentration of Zn2+ ions on zinc electroplating process was investigated by means of electrochemical noise (EN) and cyclic voltammetry methods in conjunction with the scanning electron microscop...The influence of the concentration of Zn2+ ions on zinc electroplating process was investigated by means of electrochemical noise (EN) and cyclic voltammetry methods in conjunction with the scanning electron microscopy (SEM) technique. It was found that the EN generated during the electroplating of dentritic or large polymeric zinc deposit has large potential oscillation amplitude and positive potential drift while the compact zinc deposit possesses small noise amplitude and little potential drift. With the change of rate determining step from diffusion-control through mixed-control to activation-control, the maximum relative energy obtained from wavelet analysis defined from the region with larger scales to those with smaller scales, and the EDP (relative energy distribution plot) can be us, as 'fingerprints' of EN to characterize the electroplating process and the deposit structure. The results also showed that electrochemical noise technique can give more information about the electrodeposit structure than other normal electrochemical measurements, such as linear potential sweep method and cyclic voltammetry technique.展开更多
Zinc deficiency is a public health concern and is the most prevalent micronutrient deficiencies in developing countries. The main objective of this study was to assess the prevalence and risk factors of zinc deficienc...Zinc deficiency is a public health concern and is the most prevalent micronutrient deficiencies in developing countries. The main objective of this study was to assess the prevalence and risk factors of zinc deficiency among infants and preschool children. Based on a community, the cross-sectional study was conducted in East Gojjam between October 2011 and April 2012. Two hundred and forty infants and preschool children were randomly selected in the study. Data on potential determinants of zinc deficiency were collected using a structured questionnaire. Serum zinc concentration was measured using atomic absorption spectrometer. Statistical analysis was done using ANOVA, independent sample student's t-test and linear regression model. The mean serum zinc concentration of infants and preschool children was 62.98 (±13.03) μg/dL in 95% confidence interval (CI) between 61.32 and 64.63 (i.e., 95% CI: 61.32, 64.63). About 57,1% of the subjects were zinc deficient. The main determinants of low serum zinc status of infants and preschool children were age and number of family members living on the same land. Zinc status of older children was 3.67 μg/dL (95% CI: -5.58, -1.77) lower than children who were aged 6-10 months. Serum zinc status of infants and preschool children is decreased by 0.83 p.g/dL (95% CI: -1.36, -0.30) with each additional family member. Food insecurity, dietary diversity, sex, child health, anthropometric indices, maternal education and wealth index were not associated with serum zinc status. Zinc deficiency among infants and preschool children is highly prevalent. Such potential deficiencies require urgent attention, including complementary food preparation education, traditional phytate reduction method and family planning implementation recommended in the study area.展开更多
Green roofs have become a common method to increase water retention on-site in urban areas.However,the long-term water quality of runoff from green roofs is poorly understood.This study evaluated the water quality of ...Green roofs have become a common method to increase water retention on-site in urban areas.However,the long-term water quality of runoff from green roofs is poorly understood.This study evaluated the water quality of stormwater runoff from a regular(non-vegetated)roof,a green roof installed 6 months previously,and a green roof installed 6 years ago in Portland,Oregon.Samples of runoff were taken during every rain event for 10 months,and analyzed for total phosphorus(TP),phosphate(PO_(4)^(3-)),total nitrogen(TN),nitrate(NO_(3)^(-)),ammonia(NH_(3)),copper(Cu),and zinc(Zn).Runoff from the green roofs had higher concentrations of TP and PO_(4)^(3-)and lower concentrations of Zn compared to the regular roof.Average TP concentrations from the 6-year old roof and 6-month old roof were 6.3 and 14.6 times higher,respectively,than concentrations from the regular roof,and average PO_(4)^(3-)concentrations from the 6-year old roof and 6-month old roof were 13.5 and 26.6 times higher,respectively,compared to the regular roof.Runoff from the 6-month old green roof had higher concentrations of TP and PO_(4)^(3-)than the 6-year old green roof during the wet season,but lower concentrations during the dry season.The 6-month old green roof installations where receiving waters are sensitive or impaired may need additional treatment methods to reduce phosphorus levels.As green roofs age,water retention decreases and phosphorus leaching increases during the dry season.展开更多
基金Project (50964004) supported by the National Natural Science Foundation of China
文摘The leaching behavior of main metallic sulphides in zinc concentrate under atmospheric oxygen-rich direct leaching conditions was studied through mineralogical analysis. The results show that the sulphides dissolve obviously except pyrite. Based on the relationship between elemental sulfur and the residual sulphides in the leaching residue, the dissolution of sphalerite, chalcopyrite, covellite and galena is assumed to follow the indirect oxidation reactions, where the acidic dissolution takes place firstly and then the released H2S transfers from the mineral surface into bulk solution and is further oxidized into elemental sulfur. The interface chemical reaction is further supposed as the controlling step in the leaching of these sulphides. The direct electrochemical oxidation reactions are assumed to contribute to the dissolution of pyrrhotite, which is controlled by the diffusion through elemental sulfur layer.
基金Project(50674104) supported by the National Natural Science Foundation of ChinaProject(2006BA02B04-4-2) supported by the Planned Science and Technology of China
文摘A hydrometallurgical process for indium extraction and ferric oxide powder preparation for soft magnetic ferrite material was developed. Using reduction lixivium from high-acid reductive leaching of zinc oxide calcine as raw solution, copper and indium were firstly recovered by iron powder cementation and neutralization. The recovery ratios of Cu and In are 99% and 95%, respectively. Some harmful impurities that have negative influences on magnetic properties of soft magnetic ferrite material are deeply removed with sulfidization purification and neutral flocculation method. Under the optimum conditions, the content of impurities like Cu, Pb, As, Al in pure Zn-Fe sulfate solution are less than 0.004 g/L, but those of Cd, Si, Ca and Mg are relatively high. Finally, thermal precipitation of iron is carried out at 210 ℃ for 1.5 h. The precipitation ratio of Fe is 93.33%. Compared with the quality standard of ferric oxide for soft magnetic ferrite materials, the contents of Al and Mg in obtained ferric oxide powder meet the requirement of YHT1 level of ferric oxide, and those of Si, Ca meet the requirement of YHT3 level of ferric oxide. XRD and SEM characterizations confirm that the obtained sample is well-dispersed spindle spherule with regular a-Fe2O3 crystal structure. The length-to-diameter ratio ofa-Fe2O3 powder is (3-4):1 with an average particle size of 0.5 μm.
基金Project(20050145029)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(2005221012)supported by Science and Technology Talents Fund for Excellent Youth of Liaoning Province,China
文摘Effects of particle size of the zinc sulfide concentrate,leaching temperature,solid-to-liquid ratio and additive amount on pressure acid leaching process of the zinc sulfide concentrate were studied.The results indicate that the additive can improve the reaction kinetics and the conversion rate.And sulfur can be successfully separated from the zinc sulfide concentrate as elemental sulfur.The reasonable experiment parameters are obtained as follows:the leaching temperature 150℃,oxygen partial pressure 1 MPa,additive amount 1%,solid-to-liquid ratio 1:4,leaching time 2 h,initial sulfuric acid concentration 15%,and particle size less than 44μm.Under the optimum conditions,the leaching rate of the zinc can reach 95%and the reduction rate of the sulfur can reach 90%.
基金supported by the National Basic Research Program of China (No. 2010CB630905)
文摘Zinc concentrate with high gallium content is one of the main resources of gallium.The gallium presents in the form of isomorphism in tetrahedron coordination with sulfur in sphalerite.The research was to investigate the amenability of zinc concentrate with high gallium to pressure oxygen leaching.The particle size,sulfuric acid concentration,oxygen partial pressure,additive amount,and time of reaction were studied.The extraction yields of gallium and zinc are 86%and 98%,respectively.The optimal condition is 100 g of zinc concentrate with particle size smaller than 38 lm,sulfuric acid concentration150 g L-1,leaching temperature 150℃,leaching time120 min,oxygen partial pressure 0.7 MPa,additive amount of 0.2 wt%.
基金This work was supported by the National Natural Science Foundation of China(No.20203015 and No.50499335).
文摘The influence of the concentration of Zn2+ ions on zinc electroplating process was investigated by means of electrochemical noise (EN) and cyclic voltammetry methods in conjunction with the scanning electron microscopy (SEM) technique. It was found that the EN generated during the electroplating of dentritic or large polymeric zinc deposit has large potential oscillation amplitude and positive potential drift while the compact zinc deposit possesses small noise amplitude and little potential drift. With the change of rate determining step from diffusion-control through mixed-control to activation-control, the maximum relative energy obtained from wavelet analysis defined from the region with larger scales to those with smaller scales, and the EDP (relative energy distribution plot) can be us, as 'fingerprints' of EN to characterize the electroplating process and the deposit structure. The results also showed that electrochemical noise technique can give more information about the electrodeposit structure than other normal electrochemical measurements, such as linear potential sweep method and cyclic voltammetry technique.
文摘Zinc deficiency is a public health concern and is the most prevalent micronutrient deficiencies in developing countries. The main objective of this study was to assess the prevalence and risk factors of zinc deficiency among infants and preschool children. Based on a community, the cross-sectional study was conducted in East Gojjam between October 2011 and April 2012. Two hundred and forty infants and preschool children were randomly selected in the study. Data on potential determinants of zinc deficiency were collected using a structured questionnaire. Serum zinc concentration was measured using atomic absorption spectrometer. Statistical analysis was done using ANOVA, independent sample student's t-test and linear regression model. The mean serum zinc concentration of infants and preschool children was 62.98 (±13.03) μg/dL in 95% confidence interval (CI) between 61.32 and 64.63 (i.e., 95% CI: 61.32, 64.63). About 57,1% of the subjects were zinc deficient. The main determinants of low serum zinc status of infants and preschool children were age and number of family members living on the same land. Zinc status of older children was 3.67 μg/dL (95% CI: -5.58, -1.77) lower than children who were aged 6-10 months. Serum zinc status of infants and preschool children is decreased by 0.83 p.g/dL (95% CI: -1.36, -0.30) with each additional family member. Food insecurity, dietary diversity, sex, child health, anthropometric indices, maternal education and wealth index were not associated with serum zinc status. Zinc deficiency among infants and preschool children is highly prevalent. Such potential deficiencies require urgent attention, including complementary food preparation education, traditional phytate reduction method and family planning implementation recommended in the study area.
基金funded by the Oregon Alliance of Independent Colleges and Universities and the Shiley Fellows Fund.
文摘Green roofs have become a common method to increase water retention on-site in urban areas.However,the long-term water quality of runoff from green roofs is poorly understood.This study evaluated the water quality of stormwater runoff from a regular(non-vegetated)roof,a green roof installed 6 months previously,and a green roof installed 6 years ago in Portland,Oregon.Samples of runoff were taken during every rain event for 10 months,and analyzed for total phosphorus(TP),phosphate(PO_(4)^(3-)),total nitrogen(TN),nitrate(NO_(3)^(-)),ammonia(NH_(3)),copper(Cu),and zinc(Zn).Runoff from the green roofs had higher concentrations of TP and PO_(4)^(3-)and lower concentrations of Zn compared to the regular roof.Average TP concentrations from the 6-year old roof and 6-month old roof were 6.3 and 14.6 times higher,respectively,than concentrations from the regular roof,and average PO_(4)^(3-)concentrations from the 6-year old roof and 6-month old roof were 13.5 and 26.6 times higher,respectively,compared to the regular roof.Runoff from the 6-month old green roof had higher concentrations of TP and PO_(4)^(3-)than the 6-year old green roof during the wet season,but lower concentrations during the dry season.The 6-month old green roof installations where receiving waters are sensitive or impaired may need additional treatment methods to reduce phosphorus levels.As green roofs age,water retention decreases and phosphorus leaching increases during the dry season.