Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and ...Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and dc magnetron co-sputtering technique. The effect of In-doping on structural, morphological and electrical properties is studied. The different dopant concentrations are accomplished by varying the direct current power of the In target while keeping the fixed radio frequency power of the ZnO target through the co-sputtering deposition technique by using argon as the sputtering gas at ambient temperature. The structural analysis confirms that all the grown thin films preferentially orientate along the c-axis with the wurtzite hexagonal crystal structure without having any kind of In oxide phases. The presenting Zn, 0 and In elements' chemical compositions are identified with EDX mapping analysis of the deposited thin films and the calculated M ratio has been found to decrease with the increasing In power. The surface topographies of the grown thin films are examined with the atomic force microscope technique. The obtained results reveal that the grown film roughness increases with the In power. The Hall measurements ascertain that all the grown films have n-type conductivity and also the other electrical parameters such as resistivity,mobility and carrier concentration are analyzed.展开更多
Zinc nitride films were prepared by RF magnetron sputtering a metallic zinc target in NH3-Ar mixture gases on glass substrate at room temperature. The effects of NH3 ratio on the structural and optical properties of t...Zinc nitride films were prepared by RF magnetron sputtering a metallic zinc target in NH3-Ar mixture gases on glass substrate at room temperature. The effects of NH3 ratio on the structural and optical properties of the films were examined. X-ray diffraction (XRD) analysis indicates that the films are polycrystalline and have a preferred orientation of (321). An indirect optical band gap increased from 2.33 to 2.70 eV when the NH3 ratio varied from 5% to 25%. The photoluminescence (PL) spectrum shows two emission peaks; the peak located at 437 nm is attributed to the incorporation of oxygen, and the other at 459 nm corresponds to the intrinsic emission.展开更多
基金Supported by the RU Top-Down under Grant No 1001/CSS/870019
文摘Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and dc magnetron co-sputtering technique. The effect of In-doping on structural, morphological and electrical properties is studied. The different dopant concentrations are accomplished by varying the direct current power of the In target while keeping the fixed radio frequency power of the ZnO target through the co-sputtering deposition technique by using argon as the sputtering gas at ambient temperature. The structural analysis confirms that all the grown thin films preferentially orientate along the c-axis with the wurtzite hexagonal crystal structure without having any kind of In oxide phases. The presenting Zn, 0 and In elements' chemical compositions are identified with EDX mapping analysis of the deposited thin films and the calculated M ratio has been found to decrease with the increasing In power. The surface topographies of the grown thin films are examined with the atomic force microscope technique. The obtained results reveal that the grown film roughness increases with the In power. The Hall measurements ascertain that all the grown films have n-type conductivity and also the other electrical parameters such as resistivity,mobility and carrier concentration are analyzed.
基金Project supported by the National Natural Science Foundation of China(No.10974077)the Natural Science Foundation of Shandong Province,China(No.2009ZRB01702)the Shandong Province Higher Educational Science and Technology Program,China(No. J10LA08)
文摘Zinc nitride films were prepared by RF magnetron sputtering a metallic zinc target in NH3-Ar mixture gases on glass substrate at room temperature. The effects of NH3 ratio on the structural and optical properties of the films were examined. X-ray diffraction (XRD) analysis indicates that the films are polycrystalline and have a preferred orientation of (321). An indirect optical band gap increased from 2.33 to 2.70 eV when the NH3 ratio varied from 5% to 25%. The photoluminescence (PL) spectrum shows two emission peaks; the peak located at 437 nm is attributed to the incorporation of oxygen, and the other at 459 nm corresponds to the intrinsic emission.