期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A facile solution processed ZnO@ZnS core–shell nanorods arrays for high-efficiency perovskite solar cells with boosted stability 被引量:2
1
作者 Kun Chen Weijian Tang +4 位作者 Yu Chen Ruihan Yuan Yinhua Lv Wenjuan Shan Wen-Hua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期553-560,I0014,共9页
Zinc Oxide(ZnO)has been extensively applied as electron transport material(ETM)in perovskite solar cells(PSCs)since the emergence of PSCs.However,some chemisorbed oxygen species on the surface of ZnO can cause the deg... Zinc Oxide(ZnO)has been extensively applied as electron transport material(ETM)in perovskite solar cells(PSCs)since the emergence of PSCs.However,some chemisorbed oxygen species on the surface of ZnO can cause the degradation of CH3NH3+(MA^(+))based perovskite.To avoid the destructive effect of ZnO,a facile solution strategy was proposed to produce a ZnS shell around the ZnO nanorods arrays(ZnO-NRs),i.e.ZnO@ZnS core-shell nanorods(ZnO-NRs@ZnS).The ZnO-NRs@ZnS cascade structure can not only facilitate carrier transport,but also enhance the stability of ZnO based PSCs.A power conversion efficiency(PCE)of 20.6%was finally yielded,which is the-state-of-the-art efficiency for PSCs with one-dimensional(1 D)ZnO electron transport materials(ETMs).Moreover,over 90%of the initial efficiency was retained for the unencapsulated device with ZnO-NRs@ZnS ETMs at 85℃for 500 h,demonstrating excellent stability.This work provides a simple and efficient avenue to simultaneously enhance the photovoltaic(PV)performance and stability of 1 D ZnO nanostructure-based PSCs. 展开更多
关键词 zinc oxide nanorods arrays Core-cell structure Electron transport material Perovskite solar cells STABILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部