期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Structural,Morphological and Electrical Properties of In-Doped Zinc Oxide Nanostructure Thin Films Grown on p-Type Gallium Nitride by Simultaneous Radio-Frequency Direct-Current Magnetron Co-Sputtering
1
作者 R.Perumal Z.Hassan R.Saravanan 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期77-80,共4页
Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and ... Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and dc magnetron co-sputtering technique. The effect of In-doping on structural, morphological and electrical properties is studied. The different dopant concentrations are accomplished by varying the direct current power of the In target while keeping the fixed radio frequency power of the ZnO target through the co-sputtering deposition technique by using argon as the sputtering gas at ambient temperature. The structural analysis confirms that all the grown thin films preferentially orientate along the c-axis with the wurtzite hexagonal crystal structure without having any kind of In oxide phases. The presenting Zn, 0 and In elements' chemical compositions are identified with EDX mapping analysis of the deposited thin films and the calculated M ratio has been found to decrease with the increasing In power. The surface topographies of the grown thin films are examined with the atomic force microscope technique. The obtained results reveal that the grown film roughness increases with the In power. The Hall measurements ascertain that all the grown films have n-type conductivity and also the other electrical parameters such as resistivity,mobility and carrier concentration are analyzed. 展开更多
关键词 ZnO of Structural Morphological and Electrical Properties of In-Doped zinc oxide Nanostructure thin films Grown on p-Type Gallium Nitride by Simultaneous Radio-Frequency Direct-Current Magnetron Co-Sputtering that by were been In EDX on
下载PDF
MICROSTRUCTURE AND PROPERTIES OF ANNEALED ZnO THIN FILMS DEPOSITED BY MAGNETRON SPUTTERING 被引量:1
2
作者 J.Lee W.Gao +3 位作者 Z.Li M.Hodgson A.Asadov J.Metson 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第3期177-183,共7页
ZnO thin films were deposited on a glass substrate by dc (direct current) and rf (radio frequency) magnetron sputtering. Post-deposition annealing was performed in different atmospheres and at different temperatures. ... ZnO thin films were deposited on a glass substrate by dc (direct current) and rf (radio frequency) magnetron sputtering. Post-deposition annealing was performed in different atmospheres and at different temperatures. The correlation of the annealing conditions with the microstructure and properties of the ZnO films wer e investigated by ultraviolet-visible spectroscopy, X-ray diffraction, conductiv ity measurement and scanning electron microscopy. Only the strong 002 peak could be observed by X-ray diffraction. The post-deposition annealing of ZnO films wa s found to alter the film's microstructure and properties, including crystallini ty, porosity, grain size, internal stress level and resistivity. It was also fou nd that after annealing, the conductivity of poorly conductive samples often imp roved. However, annealing does not improve the conductivity of samples with high conductivity prior to annealing. The resistivity of as-grown films can be decre ased from 102 to 10-4Ω·cm after annealing in nitrogen. To explain the effects of annealing on the conductivity of ZnO, it is believed that annealing may alter the presence and distribution of oxygen defects, reduce the lattice stress, cau se diffusion, grain coarsening and recrystallization. Annealing will reduce the density of grain boundaries in less dense films, which may decrease the resistiv ity of the films. On the other hand, annealing may also increase the porosity of thin films, leading to an increase in resistivity. 展开更多
关键词 zinc oxide thin films microstructure magnetron sputtering post-deposition annealing electrical conductivity
下载PDF
Modified textured surface MOCVD-ZnO:B transparent conductive layers for thinfilm solar cells 被引量:2
3
作者 陈新亮 闫聪博 +4 位作者 耿新华 张德坤 魏长春 赵颖 张晓丹 《Journal of Semiconductors》 EI CAS CSCD 2014年第4期37-41,共5页
Modified textured surface boron-doped ZnO (ZnO:B) transparent conductive layers for thin-film solar cells were fabricated by low-pressure metal organic chemical vapor deposition (LP-MOCVD) on glass substrates. Th... Modified textured surface boron-doped ZnO (ZnO:B) transparent conductive layers for thin-film solar cells were fabricated by low-pressure metal organic chemical vapor deposition (LP-MOCVD) on glass substrates. These modified textured surface ZnO:B thin films included two layers. The first ZnO:B layer, which has a pyramid- shaped texture, was deposited under conventional growth conditions, and the second layer, which has a sphere- like structure, at a relatively lower growth temperature. Typical bi-layer ZnO:B thin films exhibit a high electron mobility of 27.6 cm^2/(V.s) due to improved grain boundary states. For bi-layer ZnO:B, the haze value increases and the total transmittance decreases with the increasing film thickness of the second modification layer. When applied in hydrogenated microcrystalline silicon (μc-Si:H) thin-film solar cells, the modified textured surface ZnO:B layers present relatively higher conversion efficiency than conventional ZnO:B films. 展开更多
关键词 zinc oxide thin films transparent conductive oxides MOCVD textured surface thin-film solar cells
原文传递
Thickness dependence of the properties of transparent conducting ZnO:Zr films deposited on flexible substrates by RF magnetron sputtering 被引量:2
4
作者 张化福 类成新 +1 位作者 刘汉法 袁长坤 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2009年第4期18-21,共4页
Transparent conducting zirconium-doped zinc oxide (ZnO:Zr) thin films with high transparency, low resistivity and good adhesion were successfully prepared on water-cooled flexible substrates (polyethylene glycol t... Transparent conducting zirconium-doped zinc oxide (ZnO:Zr) thin films with high transparency, low resistivity and good adhesion were successfully prepared on water-cooled flexible substrates (polyethylene glycol terephthalate, PET) by RF magnetron sputtering. The structural, electrical and optical properties of the films were studied for different thicknesses in detail. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that all the deposited films are polycrystalline with a hexagonal structure and a preferred orientation perpendicular to the substrate. The lowest resistivity achieved is 1.55 × 10-3 Ω·cm for a thickness of 189 nm with a Hall mobility of 17.6 cm2/(V·s) and a carrier concentration of 2.15×1020 cm-3. All the films present a high transmittance of above 90% in the wavelength range of the visible spectrum. 展开更多
关键词 zirconium-doped zinc oxide thin films flexible substrates magnetron sputtering transparent conducting films
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部