Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome an...Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets.In study 1,piglets received either a high concentration of zinc(Zn)as zinc oxide(Zn O,Zn,2,690 mg/kg)or a low Zn concentration(100 mg/kg)in the diet during the post weaning period(d 14–23).The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated.In study 2,the impact of timing of the dietary zinc intervention was investigated,i.e.,between d 0–14 and/or d 14–23 post weaning,and the consecutive effects on the piglet's intestinal functionality,here referring to microbiota composition and diversity and gene expression profiles.Results Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration Zn O content.A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change,where mainly the commensals inter-changed.In the immediate post weaning period,i.e.,d 0–14,the highest number of differentially expressed genes(DEGs)in intestinal tissue were observed between animals receiving a diet with a low or high concentration Zn O content,i.e.,23 DEGs in jejunal tissue and 11 DEGs in ileal tissue.These genes are involved in biological processes related to immunity and inflammatory responses.For example,genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration Zn O content compared to low Zn O content in both jejunum and ileum tissue.In the second study,a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration Zn O content compared to low Zn O content.Conclusions Supplementing a diet with a pharmaceutical level of Zn as Zn O for clinically healthy post weaning piglets influences various aspects intestinal functionality,in particular in the first two weeks post-weaning.The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue.The effects do not seem related to a direct antimicrobial effect of Zn O.展开更多
Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practica...Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.展开更多
Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely...Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely limited the feasibility of such materials.In this work,unique hydrated vanadates(CaVO,BaVO)were obtained by intercalation of Ca^(2+)or Ba^(2+)into hydrated vanadium pentoxide.In the CaVO//Zn and BaVO//Zn batteries systems,the former delivered up to a 489.8 mAh g^(-1)discharge specific capacity at 0.1 A g^(-1).Moreover,the remarkable energy density of 370.07 Wh kg^(-1)and favorable cycling stability yard outperform BaVO,pure V_(2)O_(5),and many reported cathodes of similar ionic intercalation compounds.In addition,pseudocapacitance analysis,galvanostatic intermittent titration(GITT)tests,and Trasatti analysis revealed the high capacitance contribution and Zn^(2+)diffusion coefficient of CaVO,while an in-depth investigation based on EIS elucidated the reasons for the better electrochemical performance of CaVO.Notably,ex-situ XRD,XPS,and TEM tests further demonstrated the Zn^(2+)insertion/extraction and Zn-storage mechanism that occurred during the cycle in the CaVO//Zn battery system.This work provides new insights into the intercalation of similar divalent cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity aqueous ZIBs.展开更多
The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA v...The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.展开更多
Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thre...Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals of different types, birnessite, todorokite, and hausmannite, could actively oxidize As^Ⅲ to Asv, and greatly varied in their oxidation ability. Layer structured birnessite exhibited the highest capacity of As^Ⅲ oxidation, followed by the tunnel structured todorokite. Lower oxide hansmannite possessed much low capacity of As^Ⅲ oxidation, and released more Mn^2+ than birnessite and todorokite during the oxidation. The maximum amount of Asv produced during the oxidation of As^Ⅲ by Mn oxide minerals was in the order: birnessite (480.4 mmol/kg) 〉 todorokite (279.6 mmol/kg) 〉 hansmannite (117.9 mmol/kg). The oxidation capacity of the Mn oxide minerals was found to be relative to the composition, crystallinity, and surface properties. In the presence of goethite oxidation of As^Ⅲ by Mn oxide minerals increased, with maximum amounts of Asv being 651.0 mmol/kg for birnessite, 332.3 mmol/kg for todorokite and 159.4 mmol/kg for hansmannite. Goethite promoted As^Ⅲ oxidation on the surface of Mn oxide minerals through adsorption of the Asv produced, incurring the decrease of Asv concentration in solutions. Thus, the combined effects of the oxidation (by Mn oxide minerals)-adsorption (by goethite) lead to rapid oxidation and immobilization of As in soils and sediments and alleviation of the As^Ⅲ toxicity in the environments.展开更多
This study reports on the adsorption efficiency of a natural iron oxide from Mballam-Cameroon in comparison with synthesized goethite to simulta-neously remove cobalt and nickel ions from aqueous solutions. Chemical a...This study reports on the adsorption efficiency of a natural iron oxide from Mballam-Cameroon in comparison with synthesized goethite to simulta-neously remove cobalt and nickel ions from aqueous solutions. Chemical analysis on the natural iron oxide sample revealed iron as the main element and hematite (58.52%) goethite (19.42%), kaolinite (12.69%) and quartz (7.79%) as the component phases in the iron oxide sample. The iron oxide was found to be microporous (BET surface area 43.27 m2/g) with fairly spherical polydisperse particles. Results show maximum absorption for Co(II) and Ni(II) ions for both adsorbents occurred at an equilibrium contact time of 80 mins, dose rate of 0.1 g/L, and pH = 7. Goethite was slightly more efficient at removing target metal ions with maximal adsorbed quantities at 117.8 mg/g of Co(II) and 100.6 mg/g of Ni(II), and 103.9 mg/g of Co(II) and 85.2 mg/g of Ni(II) ions for natural iron oxide. Equilibrium modelling presented the Freundlich isotherm as the best fit model for both adsorbents and metal ions, indicating heterogeneity of the surface binding sites during adsorption. The pseudo-second order kinetic model was the best-fit model, indicating chemical adsorption between the adsorbent surface and metal ions, hence a good correlation between equilibrium and kinetics. The findings indicate that the efficacy of the natural iron oxide from Mballam is almost equivalent to that of synthetic goethite, validating its applicability for the simultaneous removal of cobalt and nickel ions from aqueous solution.展开更多
With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4...With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance.展开更多
A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%,...A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible.展开更多
The species of arsenic in secondary zinc oxide generated from fuming furnace were investigated. The results revealed that there are mainly three types of secondary zinc oxide based on three arsenic species. The main p...The species of arsenic in secondary zinc oxide generated from fuming furnace were investigated. The results revealed that there are mainly three types of secondary zinc oxide based on three arsenic species. The main phase of As is As2O3 in type Ⅰ, zinc arsenite (Zn(AsO2)2) in type Ⅱ and lead arsenate (Pb(As206), Pb4As2O9) in type Ⅲ, respectively. Selective leaching of zinc oxide of type Ⅱ was carried out. The leaching rate of As kept at 65%-70% with 30 g/L NaOH and L/S ratio of 3 at 20 ℃ for 1 h, while the losses of Pb and Zn were both below 1%.展开更多
Ida2--H2O system(iminodiacetate aqueous solution) was used to leach a low grade zinc oxide ore for Zn extraction.The effects of leaching time,liquid-solid ratio(L/S),total concentration of Ida2-([Ida2-]T),leachi...Ida2--H2O system(iminodiacetate aqueous solution) was used to leach a low grade zinc oxide ore for Zn extraction.The effects of leaching time,liquid-solid ratio(L/S),total concentration of Ida2-([Ida2-]T),leaching temperature and pH on Zn leaching recovery and the dissolution of impurities such as Ca,Mg,Cu,Ni,Fe,Pb and Cd were investigated.Results show that Ca,Mg and Fe in ores were hardly dissolved in alkalescent iminodiacetate aqueous solution,while valuable metals such as Cu,Ni,Pb and Cd were partly dissolved into leaching liquor with Zn.The recovery of Zn reaches 76.6% when the ores were leached for 4 h at 70 ℃ by 0.9 mol/L iminodiacetate aqueous solution with pH of 8 and L/S of 5:1.展开更多
The selective recovery of lead from the zinc oxide dust using an alkaline Na2EDTA solution was investigated. The effects of temperature, leaching time, Na2EDTA concentration and initial NaOH concentration on the leach...The selective recovery of lead from the zinc oxide dust using an alkaline Na2EDTA solution was investigated. The effects of temperature, leaching time, Na2EDTA concentration and initial NaOH concentration on the leaching rates of lead and zinc were studied. The following optimized leaching conditions were obtained: liquid-to-solid ratio 5:1 mL/g, stirring speed 650 r/min, Na2EDTA concentration 0.12 mol/L, initial NaOH concentration 0.5 mol/L, leaching temperature 70 ℃, leaching time 120 min. Under the optimized conditions, the average leaching rates of lead, zinc, fluoride and chloride are 89.92%, 0.94%, 62.84% and 90.02%, respectively. The filtrate was used to electrowin lead powders. The average current efficiency of electrowinning is about 93% and lead content is higher than 98% under the conditions of temperature of 60 ℃, current density of 200 A/m2, H3PO4 concentration of 1.5 g/L, and lead ion concentration of above 5 g/L. The consumption of Na2EDTA and the direct current are about respectively 0.218 kg and 0.958 kW·h for per kilogram of lead powder.展开更多
Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were ...Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were investigated and the process conditions were optimized using response surface methodology (RSM). The results show that the effects of roasting temperature and holding time on the removal rate of F and Cl are the most significant, and the effect of stirring speed is the second. The defluorination rate reaches 92.6% while the dechlorination rate reaches 90.2%, under the process conditions of roasting temperature of 700 °C, holding time of 80 min and stirring speed of 120 r/min. The results indicate that the removal of F and Cl from fuming furnace production of zinc oxide fumes using microwave roasting process is feasible and reliable.展开更多
Cavity perturbation method was used to determine the dielectric properties (ε′,ε″, and tanδ) of zinc oxide dust in different apparent densities. The process was conducted to study the microwave-absorption prope...Cavity perturbation method was used to determine the dielectric properties (ε′,ε″, and tanδ) of zinc oxide dust in different apparent densities. The process was conducted to study the microwave-absorption properties of zinc oxide dust and the feasibility of microwave roasting zinc oxide dust to remove fluorine and chlorine. The dielectric constant, dielectric loss, and loss tangent were proportional to the apparent density of zinc oxide dust. The effects of sample mass and microwave power on the temperature increase characteristics under the microwave field were also studied. The results show that the apparent heating rate of the zinc oxide dust increases with the increase in microwave roasting power and decreases with the increase in the sample mass. The temperature of the samples reaches approximately 800 °C after microwave treatment for 8 min, which indicates that the zinc oxide dust has strong microwave-absorption ability.展开更多
A zinc oxide ZnO field emitter-based backlight unit for liquid crystal display with a gated structure is fabricated by screen-printing processes.The measured anode field emission current density reaches 0.62 mA/cm2 wh...A zinc oxide ZnO field emitter-based backlight unit for liquid crystal display with a gated structure is fabricated by screen-printing processes.The measured anode field emission current density reaches 0.62 mA/cm2 when the applied gate voltage is 570 V.Part of the anode current is contributed by the secondary electron emission which is excited from the MgO layer inside the gate apertures on the gate plate. The average emission current density and luminance are 0.47 mA/cm2 and 1 250 cd/m2 respectively with a fluctuation of about 10% during the 1 000 min measurement.By a finite element method calculation the gated structure shows a good electron beam focusing property. The driving performance of the backlight unit is characterized by SPICE simulation tools and measured by the oscilloscope. Stable field emission line-by-line scanning and fast response characteristics of the backlight unit indicate its promising application in the liquid crystal displays.展开更多
Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that t...Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that the rate performance and low-temperature performance of LiFePO4 are greatly improved by the surface treatment. Even at 20C rate, the discharge specific capacity of 100.9 mA.h/g was obtained by the AZO-coated LiFePO4 at room temperature. At -20 ℃, the discharge specific capacity at 0.2C for un-coated LiFePO4 and the coated one are 50.3 mA.h/g and 119.4 mA.h/g, respectively. It should be attributed to the electrically conductive AZO-coating which increases the electronic conductivity of LiFePO4. Furthermore, the surface-coating increases the tap-density of LiFePO4. The results indicate that the AZO-coated LiFePO4 is a good candidate of cathode material for applying in lithium power batteries.展开更多
Transparent and conducting zirconium-doped zinc oxide films with high transparency and relatively low resistivity have been successfully prepared by radio frequency (RF) msgnetron sputtering at room temperature, The...Transparent and conducting zirconium-doped zinc oxide films with high transparency and relatively low resistivity have been successfully prepared by radio frequency (RF) msgnetron sputtering at room temperature, The RF power is varied from 75 to 150 W. At first the crystallinity and conductivity of the film are improved and then both of them show deterioration with the increase of the RF power, The lowest resistivity achieved is 2.07 × 10^-3Ωcm at an RF power of 100W with a Hall mobility of 16cm^2V^-1s^-1 and a carrier concentration of 1.95 × 10^20 cm^-3. The films obtained are polycryetalline with a hexagonal structure and a preferred orientation along the c-axis, All the films have a high transmittance of approximately 92% in the visible range. The optical band gap is about 3.33 eV for the films deposited at different RF powers.展开更多
t Molecular dynamics (MD) simulations are carried out to characterize the mechanical and thermal responses of [011^-1]-oriented ZnO nanobelts with lateral dimensions of 21.22A × 18.95 A, 31.02A× 29.42 A, a...t Molecular dynamics (MD) simulations are carried out to characterize the mechanical and thermal responses of [011^-1]-oriented ZnO nanobelts with lateral dimensions of 21.22A × 18.95 A, 31.02A× 29.42 A, and40.81A ×39.89A over the temperature range of 300-1000 K. The Young's modulus and thermal conductivity of the nanobelts are evaluated. Significant surface effects on properties due to the highsurface-to-volume ratios of the nanobelts are observed. For the mechanical response, surface-stress-induced internal stress plays an important role. For the thermal response, surface scattering of phonons dominates. Calculations show that the Young's modulus is higher than the corresponding value for bulk ZnO and decreases by -33% as the lateral dimensions increase from 21.22 A × 18.95A to 40.81 A × 39.89A. The thermal conductivity is one order of magnitude lower than the corresponding value for bulk ZnO single crystal and decreases with wire size. Specifically, the conductivity of the 21.22 A × 18.95 A belt is approximately (31-18)% lower than that of the 40.81 A × 39.89 A belt over the temperature range analyzed. A significant dependence of properties on temperature is also observed, with the Young's modulus decreasing on average by 12% and the conductivity decreasing by 50% as temperature increases from 300 K to 1000 K.展开更多
The recovery of zinc from low-grade zinc oxide ores with solvent extraction-electrowinning technique was investigated by using D2EHPA as extractant and 260 # kerosene as diluent. The results show that it is possible t...The recovery of zinc from low-grade zinc oxide ores with solvent extraction-electrowinning technique was investigated by using D2EHPA as extractant and 260 # kerosene as diluent. The results show that it is possible to selectively leach zinc from the ores by heap leaching. The zinc concentration of leach solution in the first leaching cycle is 32.57 g/L, and in the sixteenth cycle the zinc concentration is 8.27g/L after solvent extraction. The leaching solution is subjected to solvent extraction, scrubbing and selective stripping for enrichment of zinc and removal of impurities. The pregnant zinc sulfate solution produced from the stripping cycle is suitable for zinc electrowinning. Extra-pure zinc metal was obtained in the electrowinning test under conventional conditions.展开更多
Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐p...Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐precipitation method. The textural properties of Zn2SnO4 support have been tuned by varying the molar ratio between base (N2H4·H2O) and metal ion (Zn2+) to be 4/1, 8/1 and 16/1. The catalytic tests for CO oxidation reaction revealed that the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ = 8/1 was the highest, while the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ =16/1 was almost identical to that of the pure support. Both fresh and used catalysts have been characterized by multiple techniques including nitrogen adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray adsorption fine structure, and tempera‐ture‐programmed reduction by hydrogen. These demonstrated that the textural properties, espe‐cially pore volume and pore size distribution, of Zn2SnO4 play crucial roles in the averaged size of gold nanoparticles, and thus determine the catalytic activity of Au‐Zn2SnO4 for CO oxidation.展开更多
The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc...The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc oxide ore 6:1,roasting temperature 450°C,holding time 150 min.The molar ratio of NaOH to zinc oxide ore was the most predominant factor affecting the extraction ratios of zinc oxide and silica.The mineral phase transformations were investigated by testing the phases of specimens obtained at different temperatures.The process was that silica reacted with molten NaOH to form Na_2SiO_3 at first,then transformed into Na_4SiO_4 with temperature rising.ZnCO_3 and its decomposing product ZnO reacted with NaOH to form Na_2ZnO_2.Na_2ZnSiO_4was also obtained.The reaction rate was investigated using unreacted shrinking core model.Two models used were chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the reaction rate was combine-controlled by two models.The activation energy and frequency factor were obtained as 24.12 k J/mol and 0.0682,respectively.展开更多
基金partially funded by the Ministry of AgricultureNature and Food Quality(project number BO-55-001-015)partly by“Vereniging Diervoederonderzoek Nederland”。
文摘Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets.In study 1,piglets received either a high concentration of zinc(Zn)as zinc oxide(Zn O,Zn,2,690 mg/kg)or a low Zn concentration(100 mg/kg)in the diet during the post weaning period(d 14–23).The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated.In study 2,the impact of timing of the dietary zinc intervention was investigated,i.e.,between d 0–14 and/or d 14–23 post weaning,and the consecutive effects on the piglet's intestinal functionality,here referring to microbiota composition and diversity and gene expression profiles.Results Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration Zn O content.A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change,where mainly the commensals inter-changed.In the immediate post weaning period,i.e.,d 0–14,the highest number of differentially expressed genes(DEGs)in intestinal tissue were observed between animals receiving a diet with a low or high concentration Zn O content,i.e.,23 DEGs in jejunal tissue and 11 DEGs in ileal tissue.These genes are involved in biological processes related to immunity and inflammatory responses.For example,genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration Zn O content compared to low Zn O content in both jejunum and ileum tissue.In the second study,a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration Zn O content compared to low Zn O content.Conclusions Supplementing a diet with a pharmaceutical level of Zn as Zn O for clinically healthy post weaning piglets influences various aspects intestinal functionality,in particular in the first two weeks post-weaning.The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue.The effects do not seem related to a direct antimicrobial effect of Zn O.
文摘Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.
基金the financial support from the National Key Research and Development Program of China(2022YFA1207503)the Giga Force Electronics Interdisciplinary Funding(JJHXM002208-2023)。
文摘Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely limited the feasibility of such materials.In this work,unique hydrated vanadates(CaVO,BaVO)were obtained by intercalation of Ca^(2+)or Ba^(2+)into hydrated vanadium pentoxide.In the CaVO//Zn and BaVO//Zn batteries systems,the former delivered up to a 489.8 mAh g^(-1)discharge specific capacity at 0.1 A g^(-1).Moreover,the remarkable energy density of 370.07 Wh kg^(-1)and favorable cycling stability yard outperform BaVO,pure V_(2)O_(5),and many reported cathodes of similar ionic intercalation compounds.In addition,pseudocapacitance analysis,galvanostatic intermittent titration(GITT)tests,and Trasatti analysis revealed the high capacitance contribution and Zn^(2+)diffusion coefficient of CaVO,while an in-depth investigation based on EIS elucidated the reasons for the better electrochemical performance of CaVO.Notably,ex-situ XRD,XPS,and TEM tests further demonstrated the Zn^(2+)insertion/extraction and Zn-storage mechanism that occurred during the cycle in the CaVO//Zn battery system.This work provides new insights into the intercalation of similar divalent cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity aqueous ZIBs.
基金Prince of Songkla University(PSU),Hat Yai,Songkhla,Thailand(Grant Number AGR581246S).
文摘The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.
基金the National Natural Science Foundation of China (Nos. 40471070 and 40403009) the Key Project of the Ministry of Education of China (No. 105122) for financial supports to this research.
文摘Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals of different types, birnessite, todorokite, and hausmannite, could actively oxidize As^Ⅲ to Asv, and greatly varied in their oxidation ability. Layer structured birnessite exhibited the highest capacity of As^Ⅲ oxidation, followed by the tunnel structured todorokite. Lower oxide hansmannite possessed much low capacity of As^Ⅲ oxidation, and released more Mn^2+ than birnessite and todorokite during the oxidation. The maximum amount of Asv produced during the oxidation of As^Ⅲ by Mn oxide minerals was in the order: birnessite (480.4 mmol/kg) 〉 todorokite (279.6 mmol/kg) 〉 hansmannite (117.9 mmol/kg). The oxidation capacity of the Mn oxide minerals was found to be relative to the composition, crystallinity, and surface properties. In the presence of goethite oxidation of As^Ⅲ by Mn oxide minerals increased, with maximum amounts of Asv being 651.0 mmol/kg for birnessite, 332.3 mmol/kg for todorokite and 159.4 mmol/kg for hansmannite. Goethite promoted As^Ⅲ oxidation on the surface of Mn oxide minerals through adsorption of the Asv produced, incurring the decrease of Asv concentration in solutions. Thus, the combined effects of the oxidation (by Mn oxide minerals)-adsorption (by goethite) lead to rapid oxidation and immobilization of As in soils and sediments and alleviation of the As^Ⅲ toxicity in the environments.
文摘This study reports on the adsorption efficiency of a natural iron oxide from Mballam-Cameroon in comparison with synthesized goethite to simulta-neously remove cobalt and nickel ions from aqueous solutions. Chemical analysis on the natural iron oxide sample revealed iron as the main element and hematite (58.52%) goethite (19.42%), kaolinite (12.69%) and quartz (7.79%) as the component phases in the iron oxide sample. The iron oxide was found to be microporous (BET surface area 43.27 m2/g) with fairly spherical polydisperse particles. Results show maximum absorption for Co(II) and Ni(II) ions for both adsorbents occurred at an equilibrium contact time of 80 mins, dose rate of 0.1 g/L, and pH = 7. Goethite was slightly more efficient at removing target metal ions with maximal adsorbed quantities at 117.8 mg/g of Co(II) and 100.6 mg/g of Ni(II), and 103.9 mg/g of Co(II) and 85.2 mg/g of Ni(II) ions for natural iron oxide. Equilibrium modelling presented the Freundlich isotherm as the best fit model for both adsorbents and metal ions, indicating heterogeneity of the surface binding sites during adsorption. The pseudo-second order kinetic model was the best-fit model, indicating chemical adsorption between the adsorbent surface and metal ions, hence a good correlation between equilibrium and kinetics. The findings indicate that the efficacy of the natural iron oxide from Mballam is almost equivalent to that of synthetic goethite, validating its applicability for the simultaneous removal of cobalt and nickel ions from aqueous solution.
基金supported by the National Basic Research Program of China(2011CB933700)the National Natural Science Foundation of China(21271165)~~
文摘With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance.
基金Project(50925417) supported by the China National Funds for Distinguished Young ScientistsProject(50830301) supported by the National Natural Science Foundation of China+1 种基金Projects(2010AA065203,2011AA061001) supported by the National High-tech Research Program of ChinaProject(NCET-10-0840) supported by the Program for New Century Excellent Talents in University,China
文摘A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible.
基金Project (50874121) supported by the National Natural Science Foundation of China
文摘The species of arsenic in secondary zinc oxide generated from fuming furnace were investigated. The results revealed that there are mainly three types of secondary zinc oxide based on three arsenic species. The main phase of As is As2O3 in type Ⅰ, zinc arsenite (Zn(AsO2)2) in type Ⅱ and lead arsenate (Pb(As206), Pb4As2O9) in type Ⅲ, respectively. Selective leaching of zinc oxide of type Ⅱ was carried out. The leaching rate of As kept at 65%-70% with 30 g/L NaOH and L/S ratio of 3 at 20 ℃ for 1 h, while the losses of Pb and Zn were both below 1%.
基金Project (2007CB613604) supported by the National Basic Research Program of China
文摘Ida2--H2O system(iminodiacetate aqueous solution) was used to leach a low grade zinc oxide ore for Zn extraction.The effects of leaching time,liquid-solid ratio(L/S),total concentration of Ida2-([Ida2-]T),leaching temperature and pH on Zn leaching recovery and the dissolution of impurities such as Ca,Mg,Cu,Ni,Fe,Pb and Cd were investigated.Results show that Ca,Mg and Fe in ores were hardly dissolved in alkalescent iminodiacetate aqueous solution,while valuable metals such as Cu,Ni,Pb and Cd were partly dissolved into leaching liquor with Zn.The recovery of Zn reaches 76.6% when the ores were leached for 4 h at 70 ℃ by 0.9 mol/L iminodiacetate aqueous solution with pH of 8 and L/S of 5:1.
基金Project (50974138) supported by the National Natural Science Foundation of ChinaProject (2010ssxt158) supported by Graduate Student Innovation Foundation of Central South University,China
文摘The selective recovery of lead from the zinc oxide dust using an alkaline Na2EDTA solution was investigated. The effects of temperature, leaching time, Na2EDTA concentration and initial NaOH concentration on the leaching rates of lead and zinc were studied. The following optimized leaching conditions were obtained: liquid-to-solid ratio 5:1 mL/g, stirring speed 650 r/min, Na2EDTA concentration 0.12 mol/L, initial NaOH concentration 0.5 mol/L, leaching temperature 70 ℃, leaching time 120 min. Under the optimized conditions, the average leaching rates of lead, zinc, fluoride and chloride are 89.92%, 0.94%, 62.84% and 90.02%, respectively. The filtrate was used to electrowin lead powders. The average current efficiency of electrowinning is about 93% and lead content is higher than 98% under the conditions of temperature of 60 ℃, current density of 200 A/m2, H3PO4 concentration of 1.5 g/L, and lead ion concentration of above 5 g/L. The consumption of Na2EDTA and the direct current are about respectively 0.218 kg and 0.958 kW·h for per kilogram of lead powder.
基金Project(51104073)supported by the National Natural Science Foundation of ChinaProject(2013AA064003)supported by the High-tech Research and Development Program of China+1 种基金Project(2014CB643404)supported by the National Basic Research Program of ChinaProject(2012HB008)supported by Yunnan Province Young Academic Technology Leader Reserve Talents,China
文摘Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were investigated and the process conditions were optimized using response surface methodology (RSM). The results show that the effects of roasting temperature and holding time on the removal rate of F and Cl are the most significant, and the effect of stirring speed is the second. The defluorination rate reaches 92.6% while the dechlorination rate reaches 90.2%, under the process conditions of roasting temperature of 700 °C, holding time of 80 min and stirring speed of 120 r/min. The results indicate that the removal of F and Cl from fuming furnace production of zinc oxide fumes using microwave roasting process is feasible and reliable.
基金Project(51104073)supported by the National Natural Science Foundation of ChinaProject(2014CB643404)supported by the National Basic Research Program of China+1 种基金Project(2013AA064003)supported by the Hi-tech Research and Development Program of ChinaProject(2012HB008)supported by the Yunnan Provincial Young Academic Technology Leader Reserve Talents,China
文摘Cavity perturbation method was used to determine the dielectric properties (ε′,ε″, and tanδ) of zinc oxide dust in different apparent densities. The process was conducted to study the microwave-absorption properties of zinc oxide dust and the feasibility of microwave roasting zinc oxide dust to remove fluorine and chlorine. The dielectric constant, dielectric loss, and loss tangent were proportional to the apparent density of zinc oxide dust. The effects of sample mass and microwave power on the temperature increase characteristics under the microwave field were also studied. The results show that the apparent heating rate of the zinc oxide dust increases with the increase in microwave roasting power and decreases with the increase in the sample mass. The temperature of the samples reaches approximately 800 °C after microwave treatment for 8 min, which indicates that the zinc oxide dust has strong microwave-absorption ability.
基金The National Basic Research Program of China(973 Program)(No.2013CB328803)the National Natural Science Foundation of China(No.51002031)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20100092120022)the National High Technology Research and Development Program of China(863 Program)(No.2012AA03A302,2013AA011004)
文摘A zinc oxide ZnO field emitter-based backlight unit for liquid crystal display with a gated structure is fabricated by screen-printing processes.The measured anode field emission current density reaches 0.62 mA/cm2 when the applied gate voltage is 570 V.Part of the anode current is contributed by the secondary electron emission which is excited from the MgO layer inside the gate apertures on the gate plate. The average emission current density and luminance are 0.47 mA/cm2 and 1 250 cd/m2 respectively with a fluctuation of about 10% during the 1 000 min measurement.By a finite element method calculation the gated structure shows a good electron beam focusing property. The driving performance of the backlight unit is characterized by SPICE simulation tools and measured by the oscilloscope. Stable field emission line-by-line scanning and fast response characteristics of the backlight unit indicate its promising application in the liquid crystal displays.
文摘Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that the rate performance and low-temperature performance of LiFePO4 are greatly improved by the surface treatment. Even at 20C rate, the discharge specific capacity of 100.9 mA.h/g was obtained by the AZO-coated LiFePO4 at room temperature. At -20 ℃, the discharge specific capacity at 0.2C for un-coated LiFePO4 and the coated one are 50.3 mA.h/g and 119.4 mA.h/g, respectively. It should be attributed to the electrically conductive AZO-coating which increases the electronic conductivity of LiFePO4. Furthermore, the surface-coating increases the tap-density of LiFePO4. The results indicate that the AZO-coated LiFePO4 is a good candidate of cathode material for applying in lithium power batteries.
基金Project supported by the National Key Basic Research and Development Programme of China (Grant No 2001CB610504) and the National Natural Science Foundation of China (Grant Nos 60576039 and 10374060).Acknowledgments We thank Dr Wang Zhuo and Dr Yang ChangHong for their assistance in the experiment.
文摘Transparent and conducting zirconium-doped zinc oxide films with high transparency and relatively low resistivity have been successfully prepared by radio frequency (RF) msgnetron sputtering at room temperature, The RF power is varied from 75 to 150 W. At first the crystallinity and conductivity of the film are improved and then both of them show deterioration with the increase of the RF power, The lowest resistivity achieved is 2.07 × 10^-3Ωcm at an RF power of 100W with a Hall mobility of 16cm^2V^-1s^-1 and a carrier concentration of 1.95 × 10^20 cm^-3. The films obtained are polycryetalline with a hexagonal structure and a preferred orientation along the c-axis, All the films have a high transmittance of approximately 92% in the visible range. The optical band gap is about 3.33 eV for the films deposited at different RF powers.
基金The project supported by the US National Science Foundation through CAREER grant no. CMS9984298the National Natural Science Foundation of China (10528205)
文摘t Molecular dynamics (MD) simulations are carried out to characterize the mechanical and thermal responses of [011^-1]-oriented ZnO nanobelts with lateral dimensions of 21.22A × 18.95 A, 31.02A× 29.42 A, and40.81A ×39.89A over the temperature range of 300-1000 K. The Young's modulus and thermal conductivity of the nanobelts are evaluated. Significant surface effects on properties due to the highsurface-to-volume ratios of the nanobelts are observed. For the mechanical response, surface-stress-induced internal stress plays an important role. For the thermal response, surface scattering of phonons dominates. Calculations show that the Young's modulus is higher than the corresponding value for bulk ZnO and decreases by -33% as the lateral dimensions increase from 21.22 A × 18.95A to 40.81 A × 39.89A. The thermal conductivity is one order of magnitude lower than the corresponding value for bulk ZnO single crystal and decreases with wire size. Specifically, the conductivity of the 21.22 A × 18.95 A belt is approximately (31-18)% lower than that of the 40.81 A × 39.89 A belt over the temperature range analyzed. A significant dependence of properties on temperature is also observed, with the Young's modulus decreasing on average by 12% and the conductivity decreasing by 50% as temperature increases from 300 K to 1000 K.
文摘The recovery of zinc from low-grade zinc oxide ores with solvent extraction-electrowinning technique was investigated by using D2EHPA as extractant and 260 # kerosene as diluent. The results show that it is possible to selectively leach zinc from the ores by heap leaching. The zinc concentration of leach solution in the first leaching cycle is 32.57 g/L, and in the sixteenth cycle the zinc concentration is 8.27g/L after solvent extraction. The leaching solution is subjected to solvent extraction, scrubbing and selective stripping for enrichment of zinc and removal of impurities. The pregnant zinc sulfate solution produced from the stripping cycle is suitable for zinc electrowinning. Extra-pure zinc metal was obtained in the electrowinning test under conventional conditions.
基金supported by the National Natural Science Foundation of China (21373259, 21301107)the Hundred Talents Project of the Chinese Academy of Sciences, the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030102)+2 种基金the Open Funding from Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciencesthe Fundamental Research Fund-ing of Shandong University (2014JC005)the Taishan Scholar Project of Shandong Province (China)~~
文摘Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐precipitation method. The textural properties of Zn2SnO4 support have been tuned by varying the molar ratio between base (N2H4·H2O) and metal ion (Zn2+) to be 4/1, 8/1 and 16/1. The catalytic tests for CO oxidation reaction revealed that the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ = 8/1 was the highest, while the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ =16/1 was almost identical to that of the pure support. Both fresh and used catalysts have been characterized by multiple techniques including nitrogen adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray adsorption fine structure, and tempera‐ture‐programmed reduction by hydrogen. These demonstrated that the textural properties, espe‐cially pore volume and pore size distribution, of Zn2SnO4 play crucial roles in the averaged size of gold nanoparticles, and thus determine the catalytic activity of Au‐Zn2SnO4 for CO oxidation.
基金Projects(51774070,51204054)supported by the National Natural Science Foundation of ChinaProject(N150204009)supported by the Ministry of Education Basic Scientific Research Business Expenses,ChinaProject(2007CB613603)supported by the National Basic Research Program of China
文摘The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc oxide ore 6:1,roasting temperature 450°C,holding time 150 min.The molar ratio of NaOH to zinc oxide ore was the most predominant factor affecting the extraction ratios of zinc oxide and silica.The mineral phase transformations were investigated by testing the phases of specimens obtained at different temperatures.The process was that silica reacted with molten NaOH to form Na_2SiO_3 at first,then transformed into Na_4SiO_4 with temperature rising.ZnCO_3 and its decomposing product ZnO reacted with NaOH to form Na_2ZnO_2.Na_2ZnSiO_4was also obtained.The reaction rate was investigated using unreacted shrinking core model.Two models used were chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the reaction rate was combine-controlled by two models.The activation energy and frequency factor were obtained as 24.12 k J/mol and 0.0682,respectively.