期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Continuously released Zn^(2+)in 3D-printed PLGA/β-TCP/Zn scaffolds for bone defect repair by improving osteoinductive and anti-inflammatory properties 被引量:1
1
作者 Chunxu Li Fengbo Sun +7 位作者 Jingjing Tian Jiahao Li Haidan Sun Yong Zhang Shigong Guo Yuanhua Lin Xiaodan Sun Yu Zhao 《Bioactive Materials》 SCIE CSCD 2023年第6期361-375,共15页
Long-term nonunion of bone defects has always been a major problem in orthopedic treatment.Artificial bone graft materials such as Poly(lactic-co-glycolic acid)/β-tricalcium phosphate(PLGA/β-TCP)scaffolds are expect... Long-term nonunion of bone defects has always been a major problem in orthopedic treatment.Artificial bone graft materials such as Poly(lactic-co-glycolic acid)/β-tricalcium phosphate(PLGA/β-TCP)scaffolds are expected to solve this problem due to their suitable degradation rate and good osteoconductivity.However,insufficient mechanical properties,lack of osteoinductivity and infections after implanted limit its large-scale clinical application.Hence,we proposed a novel bone repair bioscaffold by adding zinc submicron particles to PLGA/β-TCP using low temperature rapid prototyping 3D printing technology.We first screened the scaffolds with 1 wt%Zn that had good biocompatibility and could stably release a safe dose of zinc ions within 16 weeks to ensure long-term non-toxicity.As designed,the scaffold had a multi-level porous structure of biomimetic cancellous bone,and the Young’s modulus(63.41±1.89 MPa)and compressive strength(2.887±0.025 MPa)of the scaffold were close to those of cancellous bone.In addition,after a series of in vitro and in vivo experiments,the scaffolds proved to have no adverse effects on the viability of BMSCs and promoted their adhesion and osteogenic differentiation,as well as exhibiting higher osteogenic and anti-inflammatory properties than PLGA/β-TCP scaffold without zinc particles.We also found that this osteogenic and anti-inflammatory effect might be related to Wnt/β-catenin,P38 MAPK and NFkB pathways.This study lay a foundation for the follow-up study of bone regeneration mechanism of Zn-containing biomaterials.We envision that this scaffold may become a new strategy for clinical treatment of bone defects. 展开更多
关键词 3D printing zinc submicron particles OSTEOINDUCTIVITY ANTI-INFLAMMATORY Bone defect repair
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部