Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coat...Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.展开更多
A protecting zinc and aluminum coating on the surface of AZ91D magnesium alloys was obtained by thermal spraying to improve the corrosion and wear resistance performances. In order to enhance the combination between m...A protecting zinc and aluminum coating on the surface of AZ91D magnesium alloys was obtained by thermal spraying to improve the corrosion and wear resistance performances. In order to enhance the combination between magnesium alloy matrix and zinc and aluminum coating, the sample was heat-treated at 300℃for 2 h, then, the cross-section patterns, XRD pattern, micro-hardness, wear and corrosion resistance abilities were researched. The results indicate that the interface between the coating and substrate is metallurgical bond, and a transitional fusion layer is formed by diffusion. The micro-scale abrasion test and polarization test in 3% NaCl solution show that the diffusion-treated specimen has better wear and corrosion resistance performances in comparison with the undiffusion-treated and substrate magnesium alloys; in addition, it has relatively higher micro-hardness than the undiffusion-treated magnesium alloys.展开更多
Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge ...Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge is their high susceptibility to corrosion,thereby limiting their usability.The considerably lower reduction potential of Mg compared to other metals makes it vulnerable to galvanic coupling.The oxide layer on Mg offers little corrosion resistance because of its high porosity,inhomogeneity,and fragility.Chemical conversion coatings(CCs)belong to a distinct class because of underlying chemical reactions,which are fundamentally different from other types of coating.Typically,a CC acts as an intermediate sandwich layer between the base metal and an aesthetic paint.Although chromate CCs offer superior performance compared to phosphate CCs,yet still they release carcinogenic hexavalent chromium ions(Cr^(6+));therefore,their use is prohibited in most European nations under the Registration,Evaluation,Authorization and Restriction of Chemicals legislation framework.Phosphate-based CCs are a cost-effective and environment-friendly alternative.Accordingly,this review primarily focuses on different types of phosphate-based CCs,such as zinc,calcium,Mg,vanadium,manganese,and permanganate.It discusses their mechanisms,current status,pretreatment practices,and the influence of various parameters-such as pH,temperature,immersion time,and bath composition-on the coating performance.Some challenges associated with phosphate CCs and future research directions are also elaborated.展开更多
Revealing grains and very fine dendrites in a solidified weld metal of aluminum–magnesium–silicon alloys is difficult and thus,there is no evidence to validate the micro-and meso-scale physical models for hot cracks...Revealing grains and very fine dendrites in a solidified weld metal of aluminum–magnesium–silicon alloys is difficult and thus,there is no evidence to validate the micro-and meso-scale physical models for hot cracks. In this research, the effect of preheating on the microstructure and hot crack creation in the pulsed laser welding of AA 6061 was investigated by an optical microscope and field emission electron microscopy. Etching was carried out in the gas phase using fresh Keller’s reagent for 600 s. The results showed that the grain size of the weld metal was proportional to the grain size of the base metal and was independent of the preheating temperature. Hot cracks passed the grain boundaries of the weld and the base metal. Lower solidification rates in the preheated samples led to coarser arm spacing;therefore, a lower cooling rate. Despite the results predicted by the micro and meso-scale models, lower cooling rates resulted in increased hot cracks. The cracks could grow in the weld metal after solidification;therefore, hot cracks were larger than predicted by the hot crack prediction models.展开更多
The aluminothermic reduction of zinc oxide(ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content ...The aluminothermic reduction of zinc oxide(ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content of Mg within molten Al, which decreases the surface tension of the molten metal and conversely increases the wettability of ZnO particles. The effect of initial Mg concentration on the aluminothermic reduction rate of ZnO was analyzed at the following values: 0.90wt%, 1.20wt%, 4.00t%, 4.25wt%, and 4.40wt%. The ZnO particles were incorporated by mechanical agitation using a graphite paddle inside a bath of molten Al maintained at a constant temperature of 1123 K and at a constant agitation speed of 250 r/min, the treatment time was 240 min and the ZnO particle size was 450?500 mesh. The results show an increase in Zn concentration in the prepared alloys up to 5.43wt% for the highest initial concentration of Mg. The reaction products obtained were characterized by scanning electron microscopy and X-ray diffraction, and the efficiency of the reaction was measured on the basis of the different concentrations of Mg studied.展开更多
The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium a...The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium alloys was given.The zinc immersion, copper immersion,direct electroless Ni-P alloy plating and electroplating and electroless plating on magnesium alloys prepared by chemical conversion coating were presented in detail.Especially,the research development of magnesium alloy AZ91 and AZ31 was discussed briefly.Based on the analysis,the existing problems and future research directions were then given.展开更多
Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (...Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2·4H2O (hopeite) and AlPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by polarization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s.展开更多
The gray phosphate coating was formed on AZ91D magnesium alloy from the zinc phosphating bath containing sodium metanitrobenzene sulphonate in about 4 min. The structure, surface morphologies and phase compositions of...The gray phosphate coating was formed on AZ91D magnesium alloy from the zinc phosphating bath containing sodium metanitrobenzene sulphonate in about 4 min. The structure, surface morphologies and phase compositions of the phosphate coatings were observed and analyzed by using SEM, XRD and EDS. It is shown that the phosphate coating becomes denser and has less micro holes with increasing the concentration of sodium metanitrobenzene sulphonate in the bath in the range of 2.0 to 6.0 g/L. The addition of sodium metanitrobenzene sulphonate greatly increases the micro cathode sites for the formation of the phosphate coating and decreases the porosity of the coating.展开更多
Vanadate, usually used as the corrosion resistant inhibitor for the paint systems, is one of the substances that have been proposed as alternative to toxic chromate for the corrosion protection. In this paper, the pos...Vanadate, usually used as the corrosion resistant inhibitor for the paint systems, is one of the substances that have been proposed as alternative to toxic chromate for the corrosion protection. In this paper, the possibility of vanadate passivating from its chemical properties was introduced firstly. Then, the progress and examples in research on vanadate conversion coatings on the corrosion resistance were summarized. And the substrates discussed here contained aluminum alloys, magnesium alloys and so on. Finally, the research tendency of vanadate-based coatings was discussed.展开更多
A high content silicon aluminum alloy(Al-25Si-4Cu-1Mg)coating was prepared on a 2A12 aluminum alloy by supersonic plasma spraying.The morphology and microstructure of the coating were observed and analyzed.The hardnes...A high content silicon aluminum alloy(Al-25Si-4Cu-1Mg)coating was prepared on a 2A12 aluminum alloy by supersonic plasma spraying.The morphology and microstructure of the coating were observed and analyzed.The hardness,elastic modulus,and bonding strength of the coating were measured.The wear resistance of the coating and 2A12 aluminum alloy was studied by friction and wear test.The results indicated that the coating was compact and the porosity was only 1.5%.The phase of the coating was mainly composed ofα-Al andβ-Si as well as some hard particles(Al9Si,Al3.21Si0.47,and CuAl2).The average microhardness of the coating was HV 242,which was greater than that of 2A12 aluminum alloy(HV 110).The wear resistance of the coating was superior to 2A12 aluminum alloy.The wear mechanism of the 2A12 aluminum alloy was primarily adhesive wear,while that of the coating was primarily abrasive wear.Therefore,it is possible to prepare a high content silicon aluminum alloy coating with good wear resistance on an aluminum alloy by supersonic plasma spraying.展开更多
Zn-Mg alloy coatings were obtained by physical vapor deposition (PVD) on electroplated steel sheets. Study on the formation of intermetallic phases in the coatings was conducted through the use of X-ray diffraction ...Zn-Mg alloy coatings were obtained by physical vapor deposition (PVD) on electroplated steel sheets. Study on the formation of intermetallic phases in the coatings was conducted through the use of X-ray diffraction (XRD) ,scanning electron microscope (SEM) and glow discharge optical emission spectrometry (GDOES). It is found that MgZn2 is the main Zn-Mg alloy phase formed after heat treatment. The formation of Mg-Zn intermetallic phases is controlled not only by thermodynamics, but also by kinetics. MgZn2 has different morphologies, such as laminar structure,porous structure and floc-like structure,which are mainly determined by the annealing temperature. Obvious diffusion of Mg starts at 350 ℃, and the diffusion of iron increases significantly when the temperature is elevated to 380℃.展开更多
Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in th...Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in thickness; it was then cold rolled isothermally at room temperature for 85% reduction. The cold-rolled alloys were characterized by electron microscopy, hardness test, and tensile test to elucidate their structural evolution and evaluate their mechanical behavior. In the results, the cast alloy consists of a-aluminum and various intermetallic compounds. These compounds are segregated along the grain boundaries, which makes the alloy difficult to roll at room tem- perature. The combined effect of non-isothermal step rolling and cold rolling results in the nano/microsized compounds distributed uniformly in the matrix. The hardness is substantially increased after rolling. This increase in hardness is attributed to the ultra-fine grain size, fine-scale intermetallic compounds, and structural defects (e.g., dislocations, stacking faults, and sub-grains). The ultimate tensile strength of the rolled alloy is approximately 628 MPa with 7% ductility.展开更多
The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstrucmral observations, and electron backscatter di...The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstrucmral observations, and electron backscatter diffraction measurements. The results reveal that the elongation and the average plasticity strain ratio (r) values of the T4P (pre-aging plus natural aging)-treated alloy sheet with a rolling geome- try value between 1 and 3 are somewhat higher than those of the T4P-treated sheet with a rolling geometry value between 3 and 6. The deformation and recrystallization microstructures of the sheet with a rolling geometry value between 1 and 3 are more uniform than those of the sheet with a rolling geometry value between 3 and 6. The former also possesses somewhat higher surface quality. H {001 } 〈110〉 and Goss {110}〈001〉 orientations are the main recrystallization texture components for the former case, whereas the latter case only includes H {001 } 〈 110〉 orientation. Texture gradients are present in the two alloy sheets. Shear texture component F on the surface of the sheet with a rolling geometry value between 3 and 6 and its higher texture gradients have revealed that non-uniform deformation occurred during cold rolling. The effects of texture on the yield strength and r value were also discussed.展开更多
The effects of pulling velocity on the solidification behavior and microstructural parameters of A1Sil0Mg alloys prepared in a Bridgman-type directional solidification furnace were investigated. The microstructure, pa...The effects of pulling velocity on the solidification behavior and microstructural parameters of A1Sil0Mg alloys prepared in a Bridgman-type directional solidification furnace were investigated. The microstructure, particularly the secondary dendritic arm spacing (SDAS), and the Brinell hardness (BH) of the solidified A1Sil0Mg alloys were characterized for samples with cylindrical shapes and differ- ent conicities (θ = 0°, 5°, and 10°). Microstructural studies revealed an increased density of ct-A1 phase dendrites and a decreased interden- dritic distance with increasing pulling velocity. The dendrites were found to be preferentially oriented along the pulling direction for low pulling velocities. For larger pulling velocities, the dendrites grew first in the cooling direction but then broke as others nucleated and coars- ened. The HB values of the solidified samples increased as the pulling velocity increased. In regard to sample conicity, smaller dendrites were observed for an apex angle of θ = 5°, resulting in the largest HB value. This result was interpreted in terms of the favorable orientation of the dendrite along the pulling direction.展开更多
基金Project(51571134)supported by the National Natural Science Foundation of ChinaProject(2014TDJH104)supported by the SDUST Research Fund+1 种基金the Joint Innovative Centre for Safe and Effective Mining Technology and Equipment of Coal Resources,Shandong Province,ChinaProject(cstc2012jj A50034)supported by the Natural Science Foundation of Chongqing,China
文摘Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.
基金Projects(2005BB4079, 2004BA4002) supported by the Natural Science Foundation of Chongqing City,China
文摘A protecting zinc and aluminum coating on the surface of AZ91D magnesium alloys was obtained by thermal spraying to improve the corrosion and wear resistance performances. In order to enhance the combination between magnesium alloy matrix and zinc and aluminum coating, the sample was heat-treated at 300℃for 2 h, then, the cross-section patterns, XRD pattern, micro-hardness, wear and corrosion resistance abilities were researched. The results indicate that the interface between the coating and substrate is metallurgical bond, and a transitional fusion layer is formed by diffusion. The micro-scale abrasion test and polarization test in 3% NaCl solution show that the diffusion-treated specimen has better wear and corrosion resistance performances in comparison with the undiffusion-treated and substrate magnesium alloys; in addition, it has relatively higher micro-hardness than the undiffusion-treated magnesium alloys.
基金Uchchatar Avishkar Yojna(UAY)(Phase II)project(codeIITBBS_004)Prime M inister’s Research Fellows(PMRF)。
文摘Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge is their high susceptibility to corrosion,thereby limiting their usability.The considerably lower reduction potential of Mg compared to other metals makes it vulnerable to galvanic coupling.The oxide layer on Mg offers little corrosion resistance because of its high porosity,inhomogeneity,and fragility.Chemical conversion coatings(CCs)belong to a distinct class because of underlying chemical reactions,which are fundamentally different from other types of coating.Typically,a CC acts as an intermediate sandwich layer between the base metal and an aesthetic paint.Although chromate CCs offer superior performance compared to phosphate CCs,yet still they release carcinogenic hexavalent chromium ions(Cr^(6+));therefore,their use is prohibited in most European nations under the Registration,Evaluation,Authorization and Restriction of Chemicals legislation framework.Phosphate-based CCs are a cost-effective and environment-friendly alternative.Accordingly,this review primarily focuses on different types of phosphate-based CCs,such as zinc,calcium,Mg,vanadium,manganese,and permanganate.It discusses their mechanisms,current status,pretreatment practices,and the influence of various parameters-such as pH,temperature,immersion time,and bath composition-on the coating performance.Some challenges associated with phosphate CCs and future research directions are also elaborated.
基金The authors would like to thank the metallography laboratory personnel of University of Tehran for their cooperation.
文摘Revealing grains and very fine dendrites in a solidified weld metal of aluminum–magnesium–silicon alloys is difficult and thus,there is no evidence to validate the micro-and meso-scale physical models for hot cracks. In this research, the effect of preheating on the microstructure and hot crack creation in the pulsed laser welding of AA 6061 was investigated by an optical microscope and field emission electron microscopy. Etching was carried out in the gas phase using fresh Keller’s reagent for 600 s. The results showed that the grain size of the weld metal was proportional to the grain size of the base metal and was independent of the preheating temperature. Hot cracks passed the grain boundaries of the weld and the base metal. Lower solidification rates in the preheated samples led to coarser arm spacing;therefore, a lower cooling rate. Despite the results predicted by the micro and meso-scale models, lower cooling rates resulted in increased hot cracks. The cracks could grow in the weld metal after solidification;therefore, hot cracks were larger than predicted by the hot crack prediction models.
基金the support provided for the development of this research from Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico NacionalConsejo Nacional de Ciencia y Tecnologia (Project CB 81251)
文摘The aluminothermic reduction of zinc oxide(ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content of Mg within molten Al, which decreases the surface tension of the molten metal and conversely increases the wettability of ZnO particles. The effect of initial Mg concentration on the aluminothermic reduction rate of ZnO was analyzed at the following values: 0.90wt%, 1.20wt%, 4.00t%, 4.25wt%, and 4.40wt%. The ZnO particles were incorporated by mechanical agitation using a graphite paddle inside a bath of molten Al maintained at a constant temperature of 1123 K and at a constant agitation speed of 250 r/min, the treatment time was 240 min and the ZnO particle size was 450?500 mesh. The results show an increase in Zn concentration in the prepared alloys up to 5.43wt% for the highest initial concentration of Mg. The reaction products obtained were characterized by scanning electron microscopy and X-ray diffraction, and the efficiency of the reaction was measured on the basis of the different concentrations of Mg studied.
文摘The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium alloys was given.The zinc immersion, copper immersion,direct electroless Ni-P alloy plating and electroplating and electroless plating on magnesium alloys prepared by chemical conversion coating were presented in detail.Especially,the research development of magnesium alloy AZ91 and AZ31 was discussed briefly.Based on the analysis,the existing problems and future research directions were then given.
基金supported by the Natural Science Foundation of Henan Province (200510476009)
文摘Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2·4H2O (hopeite) and AlPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by polarization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s.
基金Project(2004CB619301) supported by the National Basic Research and Development Program and Project 985-Automotive Engineering of Jilin University
文摘The gray phosphate coating was formed on AZ91D magnesium alloy from the zinc phosphating bath containing sodium metanitrobenzene sulphonate in about 4 min. The structure, surface morphologies and phase compositions of the phosphate coatings were observed and analyzed by using SEM, XRD and EDS. It is shown that the phosphate coating becomes denser and has less micro holes with increasing the concentration of sodium metanitrobenzene sulphonate in the bath in the range of 2.0 to 6.0 g/L. The addition of sodium metanitrobenzene sulphonate greatly increases the micro cathode sites for the formation of the phosphate coating and decreases the porosity of the coating.
文摘Vanadate, usually used as the corrosion resistant inhibitor for the paint systems, is one of the substances that have been proposed as alternative to toxic chromate for the corrosion protection. In this paper, the possibility of vanadate passivating from its chemical properties was introduced firstly. Then, the progress and examples in research on vanadate conversion coatings on the corrosion resistance were summarized. And the substrates discussed here contained aluminum alloys, magnesium alloys and so on. Finally, the research tendency of vanadate-based coatings was discussed.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51675158,51535011,and 51675531)the Natural Science Foundation of Hebei Province(No.E2016202325)the Beijing Municipal Natural Science Foundation(No.3172038).
文摘A high content silicon aluminum alloy(Al-25Si-4Cu-1Mg)coating was prepared on a 2A12 aluminum alloy by supersonic plasma spraying.The morphology and microstructure of the coating were observed and analyzed.The hardness,elastic modulus,and bonding strength of the coating were measured.The wear resistance of the coating and 2A12 aluminum alloy was studied by friction and wear test.The results indicated that the coating was compact and the porosity was only 1.5%.The phase of the coating was mainly composed ofα-Al andβ-Si as well as some hard particles(Al9Si,Al3.21Si0.47,and CuAl2).The average microhardness of the coating was HV 242,which was greater than that of 2A12 aluminum alloy(HV 110).The wear resistance of the coating was superior to 2A12 aluminum alloy.The wear mechanism of the 2A12 aluminum alloy was primarily adhesive wear,while that of the coating was primarily abrasive wear.Therefore,it is possible to prepare a high content silicon aluminum alloy coating with good wear resistance on an aluminum alloy by supersonic plasma spraying.
文摘Zn-Mg alloy coatings were obtained by physical vapor deposition (PVD) on electroplated steel sheets. Study on the formation of intermetallic phases in the coatings was conducted through the use of X-ray diffraction (XRD) ,scanning electron microscope (SEM) and glow discharge optical emission spectrometry (GDOES). It is found that MgZn2 is the main Zn-Mg alloy phase formed after heat treatment. The formation of Mg-Zn intermetallic phases is controlled not only by thermodynamics, but also by kinetics. MgZn2 has different morphologies, such as laminar structure,porous structure and floc-like structure,which are mainly determined by the annealing temperature. Obvious diffusion of Mg starts at 350 ℃, and the diffusion of iron increases significantly when the temperature is elevated to 380℃.
文摘Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in thickness; it was then cold rolled isothermally at room temperature for 85% reduction. The cold-rolled alloys were characterized by electron microscopy, hardness test, and tensile test to elucidate their structural evolution and evaluate their mechanical behavior. In the results, the cast alloy consists of a-aluminum and various intermetallic compounds. These compounds are segregated along the grain boundaries, which makes the alloy difficult to roll at room tem- perature. The combined effect of non-isothermal step rolling and cold rolling results in the nano/microsized compounds distributed uniformly in the matrix. The hardness is substantially increased after rolling. This increase in hardness is attributed to the ultra-fine grain size, fine-scale intermetallic compounds, and structural defects (e.g., dislocations, stacking faults, and sub-grains). The ultimate tensile strength of the rolled alloy is approximately 628 MPa with 7% ductility.
基金supported by the National High Technical Research and Development Program of China (No. 2013AA032403)the National Natural Science Foundation of China (No. 51301016)+1 种基金the Fundamental Research Funds for the Central Universities (No. FRF-TP-14-097A2)the Constructed Project for Key Laboratory of Beijing (No. FRF-SD-B-005B)
文摘The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstrucmral observations, and electron backscatter diffraction measurements. The results reveal that the elongation and the average plasticity strain ratio (r) values of the T4P (pre-aging plus natural aging)-treated alloy sheet with a rolling geome- try value between 1 and 3 are somewhat higher than those of the T4P-treated sheet with a rolling geometry value between 3 and 6. The deformation and recrystallization microstructures of the sheet with a rolling geometry value between 1 and 3 are more uniform than those of the sheet with a rolling geometry value between 3 and 6. The former also possesses somewhat higher surface quality. H {001 } 〈110〉 and Goss {110}〈001〉 orientations are the main recrystallization texture components for the former case, whereas the latter case only includes H {001 } 〈 110〉 orientation. Texture gradients are present in the two alloy sheets. Shear texture component F on the surface of the sheet with a rolling geometry value between 3 and 6 and its higher texture gradients have revealed that non-uniform deformation occurred during cold rolling. The effects of texture on the yield strength and r value were also discussed.
基金financially supported by the doctoral scholarship grant of the Algerian-MHESR
文摘The effects of pulling velocity on the solidification behavior and microstructural parameters of A1Sil0Mg alloys prepared in a Bridgman-type directional solidification furnace were investigated. The microstructure, particularly the secondary dendritic arm spacing (SDAS), and the Brinell hardness (BH) of the solidified A1Sil0Mg alloys were characterized for samples with cylindrical shapes and differ- ent conicities (θ = 0°, 5°, and 10°). Microstructural studies revealed an increased density of ct-A1 phase dendrites and a decreased interden- dritic distance with increasing pulling velocity. The dendrites were found to be preferentially oriented along the pulling direction for low pulling velocities. For larger pulling velocities, the dendrites grew first in the cooling direction but then broke as others nucleated and coars- ened. The HB values of the solidified samples increased as the pulling velocity increased. In regard to sample conicity, smaller dendrites were observed for an apex angle of θ = 5°, resulting in the largest HB value. This result was interpreted in terms of the favorable orientation of the dendrite along the pulling direction.