The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are e...The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery.展开更多
An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are c...An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are considered to be suitable for practical applications. In this paper, we review the latest research on Ti-based hydrogen storage alloys. Firstly, the machine learning and density functional theory are introduced to provide theoretical guidance for the optimization of Ti-based hydrogen storage alloys. Then, in order to improve the hydrogen storage performance, we briefly introduce the research of AB type and AB2 type Ti-based alloys, focusing on doping elements and adaptive after treatment. Finally, suggestions for the future research and development of Ti-based hydrogen storage alloys are proposed. .展开更多
Anterior cruciate ligament(ACL)injuries of the knee are one of the most common and serious athletic injuries.The widely used cortical suspension fixation buttons for ligament reconstruction are permanent implants,part...Anterior cruciate ligament(ACL)injuries of the knee are one of the most common and serious athletic injuries.The widely used cortical suspension fixation buttons for ligament reconstruction are permanent implants,particularly those made from conventional steel or titanium alloys.In this study,a biodegradable Zn-0.45Mn-0.2Mg(ZMM42)alloy with the yield strength of 300.4 MPa and tensile strength of 329.8 MPa was prepared through hot extrusion.The use of zinc alloys in the preparation of cortical suspension fixation buttons was proposed for the first time.After 35 d of immersion in simulated body fluids,the ZMM42 alloy fixation buttons were degraded at a rate of 44μm/a,and the fixation strength was retained(379.55 N)in the traction loops.Simultaneously,the ZMM42 alloy fixation buttons exhibited an increase in MC3T3-E1 cell viability and high antibacterial activity against Escherichia coli and Staphylococcus aureus.These results reveal the potential of biodegradable zinc alloys for use as ligament reconstruction materials and for developing diverse zinc alloy cortical suspension fixation devices.展开更多
The corrosion behavior of coatings of pure zinc and Zn-Al,Zn-Al-RE alloys in NaCl solu- tions was studied by salt-spray experiments,even corrosion experiments and electrochemical measurements of bi-directional polariz...The corrosion behavior of coatings of pure zinc and Zn-Al,Zn-Al-RE alloys in NaCl solu- tions was studied by salt-spray experiments,even corrosion experiments and electrochemical measurements of bi-directional polarization curves and a.c.impedance in weak polarization region consistent regularities were obtained by these different methods,viz.,the corrosion resistance of Zn could be enhanced by alloying it with Al,and particularly with Al-RE.The causes of enhancement of corrosion resistance by RE were also discussed.展开更多
The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the comp...The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the composition of such chromate passive film was S 5 5, Na 3 4, C 11 8, Ti 7 9, O 41 6, Cr 13 7, Zn 16 0.展开更多
Base on a vast amount of testing and calculations for the welding thermal cycling curves of different testing points in fusion welding (TIG welding, gas welding) HAZ of zinc-based alloy with low melting points, this p...Base on a vast amount of testing and calculations for the welding thermal cycling curves of different testing points in fusion welding (TIG welding, gas welding) HAZ of zinc-based alloy with low melting points, this paper defines the welding thermal cycle parameters of microstructure stimulation of HAZ by zinc-based alloy fusion welding process. On the principle of which the microstrnct,are and harkness of the testing points in simulation specimens are basically correspondence with that of actual welding HAZ, the microstructure simulation of testing points Tm=370O℃. 305℃) of ZA12 alloy by fusion welding is carried out by the means of omhic-heating welding thermal simulation tester. The study results of the abrasion-resistance of simulation specimens HAZ by fusion welding process indicates that the abmsion-resistance is closely related to the form of eutectoid microstructure in or in the structure.展开更多
The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential...The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential scanning calorimetry. The results show that a fine microstructure of the as-cast alloy can be obtained by solidifying through the β phase. γ grains can nucleate directly from the β phase. The coexistence of β phase and γ phase along primary α grain boundaries contributes to the decrease in the grain size of the as-cast alloy. The phase transformation sequence during solidification of the Ti-43Al-4Nb alloy is suggested as L→L+β→β→α+β→α+βr→α+γ+βr→lamellae(α2+γ)+γ+βr. The microstructure of the alloy after heat treatment at 1 250 ℃ for 16 h exhibits a certain coarsening compared with that of the as-cast state. The remnant β phase can be removed by the heat treatment process due to the diffusion of Nb and the non-equilibrium state of β phase.展开更多
The hot corrosion behaviors of as-cast and preoxidized Ni-xCr-6.8Al based alloys in the mixture of Na2SO4+25% NaCl at 873 K were studied. The results show that the mass loss of Ni-xCr-6.8Al based alloys decreases wit...The hot corrosion behaviors of as-cast and preoxidized Ni-xCr-6.8Al based alloys in the mixture of Na2SO4+25% NaCl at 873 K were studied. The results show that the mass loss of Ni-xCr-6.8Al based alloys decreases with the increase of Cr content. Preoxidation improves the resistance to corrosion regardless of the concentration of Cr. The kinetics of as-cast Ni-12Cr-6.8Al and Ni-16Cr-6.8Al based alloys fits the parabolic law well, while that of the as-cast Ni-20Cr-6.8Al based alloy fits the power law. The kinetics of all the preoxidized samples obey the logarithmic law. The mechanism of the as-cast alloys can be well explained by the acid-base melting model. The behavior of the preoxidized alloys is found to be mainly determined by the properties of the oxide layer formed during the preoxidation to a large extend.展开更多
TiNi and Ti-based shape memory alloys were processed by equal channel angular pressing (ECAP) at 673-773 K along Bc route to obtain ultrafine grains for increasing the strength of parent phase and improving the func...TiNi and Ti-based shape memory alloys were processed by equal channel angular pressing (ECAP) at 673-773 K along Bc route to obtain ultrafine grains for increasing the strength of parent phase and improving the functional properties. The effects of both thermodynamically stable and metastable second phases on the mechanical properties and martensitic transformations of these alloys were investigated. It is found that thermodynamically stable Ti2Ni phase has no effect on martensitic transformation and superelasticity of Ti-rich TiNi alloy, thermodynamically stable α phase is harmful for ductility of Ti-Mo-Nb-V-Al alloy, but metastable Ti3Ni4 phase is effective for R phase transformation, martensitic transformation and superelasticity of Ni-rich TiNi alloy. The mechanisms of the second phases on the martensitic transformations and mechanical properties were discussed.展开更多
Zr-Y jointly modified silicide coatings were prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied ...Zr-Y jointly modified silicide coatings were prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied at room temperature and 800 ℃ using SiC balls as the counterpart. The Zr-Y jointly modified silicide coating is mainly composed of a thick (Nb,X)Si2 outer layer and a thin (Ti,Nb)5Si4 inner layer. The coatings possess much higher microhardness than the base alloy. The wear rates of both the base alloy and coatings increase with increasing the sliding loads. However, the coatings have much lower wear rates than the base alloy under the same sliding conditions. The coatings have superior anti-friction property, and can provide effective protection for the base alloy at both room temperature and 800 ℃ in air.展开更多
The hot corrosion behaviors of Ni–16Cr–xAl(x=4.5%, 6.8%, 9.0%, mass fraction) based alloys in Na2SO4–25% NaCl molten salts at 600 °C were investigated. The effects of pre-oxidation and Al content on the resi...The hot corrosion behaviors of Ni–16Cr–xAl(x=4.5%, 6.8%, 9.0%, mass fraction) based alloys in Na2SO4–25% NaCl molten salts at 600 °C were investigated. The effects of pre-oxidation and Al content on the resistance to hot corrosion were examined. The hot corrosion resistance of Ni–16Cr–xAl based alloy with Al addition from 4.5% to 9.0% increases with increasing Al content. The alloy with Al content of 9.0% shows the highest hot corrosion resistance among the examined alloys because more β–NiAl phases are obtained to sustain the Al2O3 scale repaired during hot corrosion. Pre-oxidized specimens have a superior hot corrosion resistance compared with the as-cast specimens, due to a protective oxide scale formed after pre-treatment.展开更多
Directionally solidified (DS) specimens of Nb-Ti-Si based ultrahigh temperature alloy were heat-treated at (1 500 ℃, 50 h) and (1 500 ℃, 50 h) + (1 100 ℃, 50 h), respectively. The results show that the mic...Directionally solidified (DS) specimens of Nb-Ti-Si based ultrahigh temperature alloy were heat-treated at (1 500 ℃, 50 h) and (1 500 ℃, 50 h) + (1 100 ℃, 50 h), respectively. The results show that the microstructures become uniform, the long and big primary (Nb,X)sSi3 (X represents Ti and Hf elements) plates in the DS specimens are broken into small ones, and the eutectic cells lose their lamellar morphology and their interfaces become blurry after heat-treatment. Meanwhile, the (Nb,X)sSi3 slices in the eutectic cells of the DS specimens coarsen obviously after heat-treatment. Homogenizing and aging treatments could effectively eliminate elemental microsegregation, and the segregation ratios of all elements in niobium solid solution (Nbss) in different regions tend to 1. After heat-treatment, the microhardness of retained eutectic cells increases evidently, and the maximum value reaches HV1 404.57 for the specimen directionally solidified with a withdrawing rate of 100 μm/s and then heat-treated at (1 500 ℃, 50 h) + (1 100 ℃, 50 h), which is 72.8 % higher than that under DS condition.展开更多
To investigate the effects of homogenizing and aging treatments on the microstructure of an Nb-Ti-Cr-Si based ultrahigh temperature alloy,coupons were homogenized at 1 200-1 500 °C for 24 h,and then aged at 1 000...To investigate the effects of homogenizing and aging treatments on the microstructure of an Nb-Ti-Cr-Si based ultrahigh temperature alloy,coupons were homogenized at 1 200-1 500 °C for 24 h,and then aged at 1 000 °C for 24 h.The results show that the heat-treated alloy is composed of Nb solid solution(Nbss),(Nb,X)5Si3 and Cr2Nb phases.With the increase of heat-treatment temperature,previous Nbss dendrites transformed into equiaxed grains,and petal-like Nbss/(Nb,X)5Si3 eutectic colonies gradually changed into small(Nb,X)5Si3 particles distributed in Nbss matrix.A drastic change occurred in the morphology of the Laves phase after homogenizing treatment.Previously coarse Cr2Nb blocks dissolved during homogenizing at temperature above 1 300 °C,and then much finer and crowded Cr2Nb flakes precipitated in the Nbss matrix in cooling.Aging treatment at 1 000 °C for 24 h led to further precipitation of fine particles of Laves phase in Nbss matrix and made the difference in concentrations of Ti,Hf and Al in Nbss,(Nb,X)5Si3 and Cr2Nb phases reduced.展开更多
Newly-proposed anode-free zinc-ion batteries(ZIBs)are promising to remarkably enhance the energy density of ZIBs,but are restricted by the unfavorable zinc deposition interface that causes poor cycling stability.Herei...Newly-proposed anode-free zinc-ion batteries(ZIBs)are promising to remarkably enhance the energy density of ZIBs,but are restricted by the unfavorable zinc deposition interface that causes poor cycling stability.Herein,we report a Cu-Zn alloy network-modulated zinc deposition interface to achieve stable anode-free ZIBs.The alloy network can not only stabilize the zinc deposition interface by suppressing 2D diffusion and corrosion reactions but also enhance zinc plating/stripping kinetics by accelerating zinc desolvation and nucleation processes.Consequently,the alloy network-modulated zinc deposition interface realizes high coulombic efficiency of 99.2%and high stability.As proof,Zn//Zn symmetric cells with the alloy network-modulated zinc deposition interface present long operation lifetimes of 1900 h at 1 m A/cm^(2)and 1200 h at 5 m A/cm^(2),significantly superior to Zn//Zn symmetric cells with unmodified zinc deposition interface(whose operation lifetime is shorter than 50 h),and meanwhile,Zn3V3O8cathodebased ZIBs with the alloy network-modified zinc anodes show notably enhanced rate capability and cycling performance than ZIBs with bare zinc anodes.As expected,the alloy network-modulated zinc deposition interface enables anode-free ZIBs with Zn3V3O8cathodes to deliver superior cycling stability,better than most currently-reported anode-free ZIBs.This work provides new thinking in constructing high-performance anode-free ZIBs and promotes the development of ZIBs.展开更多
The isothermal oxidation behaviors of three kinds of Ni3Al-Mo based alloys at 1150 ℃ were studied.The morphology,structure and element distribution of oxide scales of the alloys were researched by scanning electron m...The isothermal oxidation behaviors of three kinds of Ni3Al-Mo based alloys at 1150 ℃ were studied.The morphology,structure and element distribution of oxide scales of the alloys were researched by scanning electron microscopy,X-ray diffraction and electron probe microanalysis.The research results show that there are three oxide layers,an outer layer of NiO,an intermediate layer mainly composed of NiO,NiAl2O4 and a small amount of NiMoO4,and an inner layer of NiAl2O4 and Al2O3.Re element was mainly distributed in the intermediate layer,which plays a role as "diffusion barrier" in the process of oxidation,and effectively reduces the diffusion rate of Al and Mo elements outward and diffusion rate of O element inward.As a result,a Al-rich oxide layer formed in the inner layer inhibits the growth of oxide layer and improves the oxidation resistance of the alloy.展开更多
The nucleation and growth of grains in a series of Al-based alloys produced by electrolysis are observed under SEM. The atomic Ti/AI ratios of the nuclei and the distribution of Ti at certain points are analyzed by po...The nucleation and growth of grains in a series of Al-based alloys produced by electrolysis are observed under SEM. The atomic Ti/AI ratios of the nuclei and the distribution of Ti at certain points are analyzed by point EDS. The particles in different atomic Ti/AI ratios might act as the nuclei of α-Al. At the early stage of growth, the spherical Ti-enriched regions might form around these particles within very limited temperature ranges in which the reactions such as the peritectic reactions etc occur. At the latter stage of growth, the dendrites freely develop in the radial orientations, and the concentration of Ti decreases linearly along the dendrite arm and becomes negligible in the region near the periphery of the dendrite. It is believed that the nucleation is closely related with the number and dispersion of primary spherical areas in the melts, and the segregation of Ti leads to the free growth of dendrite, which is necessary for the formation of equiaxial grains.展开更多
The tribological behaviors of TiN coating and TiN+TiC+Ti(C, N)/diamond like carbon (DLC), TiN/DLC, TiC/DLC multilayers on Ti 6Al 4V alloy prepared by plasma based ion implantation (PBII) were compared. Under the test ...The tribological behaviors of TiN coating and TiN+TiC+Ti(C, N)/diamond like carbon (DLC), TiN/DLC, TiC/DLC multilayers on Ti 6Al 4V alloy prepared by plasma based ion implantation (PBII) were compared. Under the test conditions of counterbody AISI 52100, load 1 N and speed 0.05 m/s, the tribological properties of the alloy are improved by these films in the order of TiN, TiC/DLC, TiN/DLC and TiN+TiC+Ti(C,N)/DLC. Tribological behavior is affected by the conditions of surface modification and triboexperiments. The appearance of “peaks” in the wear dynamic resistance profiles may be due or correspond to the process of formation and breaking apart of transition films. The breakthrough of the DLC coated samples may start from partially wearing out, and end with joining piece dilamination. There are transition films on all counterbodies AISI 52100. When AISI 52100 counterbody is changed to Ti 6Al 4V, the wear of most modified samples is changed from only disc to both disc and ball abrasive dominated.展开更多
To quantify the nonuniform micromechanical performance of welded joint,the load-displacement curves by nanoindentation test were introduced to examine different zones including base metal,coarse grained heat affected ...To quantify the nonuniform micromechanical performance of welded joint,the load-displacement curves by nanoindentation test were introduced to examine different zones including base metal,coarse grained heat affected zone,partially melted zone,weld metal near the fusion boundary and weld metal center.The results showed that the strengthening effect of weld metal was more obvious than that of heat affected zone for nickel based welded joint and especially in coarse grained heat affected zone,the hardening resulted from overheating was not apparent.Nickel based weld metal with high content of alloying elements which were often segregated at interdendritic regions or precipitated in grain interior under nonequilibrium solidification contributed to the characteristics that differ from conventional low alloy steel welded joint.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.:51901153)Shanxi Scholarship Council of China(Grant No.:2019032)+1 种基金Natural Science Foundation of Shanxi(Grant No.:202103021224049)the Science and Technology Major Project of Shanxi Province(Grant No.:20191102008,20191102007)。
文摘The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery.
文摘An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are considered to be suitable for practical applications. In this paper, we review the latest research on Ti-based hydrogen storage alloys. Firstly, the machine learning and density functional theory are introduced to provide theoretical guidance for the optimization of Ti-based hydrogen storage alloys. Then, in order to improve the hydrogen storage performance, we briefly introduce the research of AB type and AB2 type Ti-based alloys, focusing on doping elements and adaptive after treatment. Finally, suggestions for the future research and development of Ti-based hydrogen storage alloys are proposed. .
基金financially supported by the Xiongan New Area Science and Technology Innovation Project,China(No.2022XACX0600)the Beijing Nova Program Cross Cooperation Program,China(No.20220484178)。
文摘Anterior cruciate ligament(ACL)injuries of the knee are one of the most common and serious athletic injuries.The widely used cortical suspension fixation buttons for ligament reconstruction are permanent implants,particularly those made from conventional steel or titanium alloys.In this study,a biodegradable Zn-0.45Mn-0.2Mg(ZMM42)alloy with the yield strength of 300.4 MPa and tensile strength of 329.8 MPa was prepared through hot extrusion.The use of zinc alloys in the preparation of cortical suspension fixation buttons was proposed for the first time.After 35 d of immersion in simulated body fluids,the ZMM42 alloy fixation buttons were degraded at a rate of 44μm/a,and the fixation strength was retained(379.55 N)in the traction loops.Simultaneously,the ZMM42 alloy fixation buttons exhibited an increase in MC3T3-E1 cell viability and high antibacterial activity against Escherichia coli and Staphylococcus aureus.These results reveal the potential of biodegradable zinc alloys for use as ligament reconstruction materials and for developing diverse zinc alloy cortical suspension fixation devices.
文摘The corrosion behavior of coatings of pure zinc and Zn-Al,Zn-Al-RE alloys in NaCl solu- tions was studied by salt-spray experiments,even corrosion experiments and electrochemical measurements of bi-directional polarization curves and a.c.impedance in weak polarization region consistent regularities were obtained by these different methods,viz.,the corrosion resistance of Zn could be enhanced by alloying it with Al,and particularly with Al-RE.The causes of enhancement of corrosion resistance by RE were also discussed.
文摘The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the composition of such chromate passive film was S 5 5, Na 3 4, C 11 8, Ti 7 9, O 41 6, Cr 13 7, Zn 16 0.
文摘Base on a vast amount of testing and calculations for the welding thermal cycling curves of different testing points in fusion welding (TIG welding, gas welding) HAZ of zinc-based alloy with low melting points, this paper defines the welding thermal cycle parameters of microstructure stimulation of HAZ by zinc-based alloy fusion welding process. On the principle of which the microstrnct,are and harkness of the testing points in simulation specimens are basically correspondence with that of actual welding HAZ, the microstructure simulation of testing points Tm=370O℃. 305℃) of ZA12 alloy by fusion welding is carried out by the means of omhic-heating welding thermal simulation tester. The study results of the abrasion-resistance of simulation specimens HAZ by fusion welding process indicates that the abmsion-resistance is closely related to the form of eutectoid microstructure in or in the structure.
基金Project (14) supported by Postdoctoral Science Foundation of Central South University, ChinaProject (2008AA03A233) supported by the High-tech Research and Development Program of China
文摘The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential scanning calorimetry. The results show that a fine microstructure of the as-cast alloy can be obtained by solidifying through the β phase. γ grains can nucleate directly from the β phase. The coexistence of β phase and γ phase along primary α grain boundaries contributes to the decrease in the grain size of the as-cast alloy. The phase transformation sequence during solidification of the Ti-43Al-4Nb alloy is suggested as L→L+β→β→α+β→α+βr→α+γ+βr→lamellae(α2+γ)+γ+βr. The microstructure of the alloy after heat treatment at 1 250 ℃ for 16 h exhibits a certain coarsening compared with that of the as-cast state. The remnant β phase can be removed by the heat treatment process due to the diffusion of Nb and the non-equilibrium state of β phase.
基金Project (2009AA032601) supported by the National High-tech Research and Development Program of ChinaProject supported by the Postdoctoral Science Foundation of Central South University, China
文摘The hot corrosion behaviors of as-cast and preoxidized Ni-xCr-6.8Al based alloys in the mixture of Na2SO4+25% NaCl at 873 K were studied. The results show that the mass loss of Ni-xCr-6.8Al based alloys decreases with the increase of Cr content. Preoxidation improves the resistance to corrosion regardless of the concentration of Cr. The kinetics of as-cast Ni-12Cr-6.8Al and Ni-16Cr-6.8Al based alloys fits the parabolic law well, while that of the as-cast Ni-20Cr-6.8Al based alloy fits the power law. The kinetics of all the preoxidized samples obey the logarithmic law. The mechanism of the as-cast alloys can be well explained by the acid-base melting model. The behavior of the preoxidized alloys is found to be mainly determined by the properties of the oxide layer formed during the preoxidation to a large extend.
基金Project (50671067) supported by the National Natural Science Foundation of ChinaProject (09JC1407200) supported by the Science and Technology Committee of Shanghai, China
文摘TiNi and Ti-based shape memory alloys were processed by equal channel angular pressing (ECAP) at 673-773 K along Bc route to obtain ultrafine grains for increasing the strength of parent phase and improving the functional properties. The effects of both thermodynamically stable and metastable second phases on the mechanical properties and martensitic transformations of these alloys were investigated. It is found that thermodynamically stable Ti2Ni phase has no effect on martensitic transformation and superelasticity of Ti-rich TiNi alloy, thermodynamically stable α phase is harmful for ductility of Ti-Mo-Nb-V-Al alloy, but metastable Ti3Ni4 phase is effective for R phase transformation, martensitic transformation and superelasticity of Ni-rich TiNi alloy. The mechanisms of the second phases on the martensitic transformations and mechanical properties were discussed.
基金Projects(51371145,51431003,U1435201,51401166)supported by the National Natural Science Foundation of ChinaProject(B080401)supported by the Programme of Introducing Talents of Discipline to Universities,China
文摘Zr-Y jointly modified silicide coatings were prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied at room temperature and 800 ℃ using SiC balls as the counterpart. The Zr-Y jointly modified silicide coating is mainly composed of a thick (Nb,X)Si2 outer layer and a thin (Ti,Nb)5Si4 inner layer. The coatings possess much higher microhardness than the base alloy. The wear rates of both the base alloy and coatings increase with increasing the sliding loads. However, the coatings have much lower wear rates than the base alloy under the same sliding conditions. The coatings have superior anti-friction property, and can provide effective protection for the base alloy at both room temperature and 800 ℃ in air.
基金Project (2009AA032601) supported by the National High-tech Research and Development Program of China
文摘The hot corrosion behaviors of Ni–16Cr–xAl(x=4.5%, 6.8%, 9.0%, mass fraction) based alloys in Na2SO4–25% NaCl molten salts at 600 °C were investigated. The effects of pre-oxidation and Al content on the resistance to hot corrosion were examined. The hot corrosion resistance of Ni–16Cr–xAl based alloy with Al addition from 4.5% to 9.0% increases with increasing Al content. The alloy with Al content of 9.0% shows the highest hot corrosion resistance among the examined alloys because more β–NiAl phases are obtained to sustain the Al2O3 scale repaired during hot corrosion. Pre-oxidized specimens have a superior hot corrosion resistance compared with the as-cast specimens, due to a protective oxide scale formed after pre-treatment.
基金Project(51071124)supported by the National Natural Science Foundation of ChinaProject(CX200605)supported by the Doctorate Foundation of Northwestern Polytechnical University,ChinaProject(20096102110012)supported by a Special Research Fund for Doctoral Disciplines in Colleges and Universities of the Ministry of Education,China
文摘Directionally solidified (DS) specimens of Nb-Ti-Si based ultrahigh temperature alloy were heat-treated at (1 500 ℃, 50 h) and (1 500 ℃, 50 h) + (1 100 ℃, 50 h), respectively. The results show that the microstructures become uniform, the long and big primary (Nb,X)sSi3 (X represents Ti and Hf elements) plates in the DS specimens are broken into small ones, and the eutectic cells lose their lamellar morphology and their interfaces become blurry after heat-treatment. Meanwhile, the (Nb,X)sSi3 slices in the eutectic cells of the DS specimens coarsen obviously after heat-treatment. Homogenizing and aging treatments could effectively eliminate elemental microsegregation, and the segregation ratios of all elements in niobium solid solution (Nbss) in different regions tend to 1. After heat-treatment, the microhardness of retained eutectic cells increases evidently, and the maximum value reaches HV1 404.57 for the specimen directionally solidified with a withdrawing rate of 100 μm/s and then heat-treated at (1 500 ℃, 50 h) + (1 100 ℃, 50 h), which is 72.8 % higher than that under DS condition.
基金Project (51071124) supported by the National Natural Science Foundation of ChinaProject (20096102110012) supported by the Ministry of Education, China Project (07-TP-2008) supported by the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘To investigate the effects of homogenizing and aging treatments on the microstructure of an Nb-Ti-Cr-Si based ultrahigh temperature alloy,coupons were homogenized at 1 200-1 500 °C for 24 h,and then aged at 1 000 °C for 24 h.The results show that the heat-treated alloy is composed of Nb solid solution(Nbss),(Nb,X)5Si3 and Cr2Nb phases.With the increase of heat-treatment temperature,previous Nbss dendrites transformed into equiaxed grains,and petal-like Nbss/(Nb,X)5Si3 eutectic colonies gradually changed into small(Nb,X)5Si3 particles distributed in Nbss matrix.A drastic change occurred in the morphology of the Laves phase after homogenizing treatment.Previously coarse Cr2Nb blocks dissolved during homogenizing at temperature above 1 300 °C,and then much finer and crowded Cr2Nb flakes precipitated in the Nbss matrix in cooling.Aging treatment at 1 000 °C for 24 h led to further precipitation of fine particles of Laves phase in Nbss matrix and made the difference in concentrations of Ti,Hf and Al in Nbss,(Nb,X)5Si3 and Cr2Nb phases reduced.
基金financial support provided by the National Natural Science Foundation of China(52002149)the Guangdong Basic and Applied Basic Research Foundation(2020A1515111202)+1 种基金the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds)(pdjh2022a0056)the Fundamental Research Funds for the Central Universities。
文摘Newly-proposed anode-free zinc-ion batteries(ZIBs)are promising to remarkably enhance the energy density of ZIBs,but are restricted by the unfavorable zinc deposition interface that causes poor cycling stability.Herein,we report a Cu-Zn alloy network-modulated zinc deposition interface to achieve stable anode-free ZIBs.The alloy network can not only stabilize the zinc deposition interface by suppressing 2D diffusion and corrosion reactions but also enhance zinc plating/stripping kinetics by accelerating zinc desolvation and nucleation processes.Consequently,the alloy network-modulated zinc deposition interface realizes high coulombic efficiency of 99.2%and high stability.As proof,Zn//Zn symmetric cells with the alloy network-modulated zinc deposition interface present long operation lifetimes of 1900 h at 1 m A/cm^(2)and 1200 h at 5 m A/cm^(2),significantly superior to Zn//Zn symmetric cells with unmodified zinc deposition interface(whose operation lifetime is shorter than 50 h),and meanwhile,Zn3V3O8cathodebased ZIBs with the alloy network-modified zinc anodes show notably enhanced rate capability and cycling performance than ZIBs with bare zinc anodes.As expected,the alloy network-modulated zinc deposition interface enables anode-free ZIBs with Zn3V3O8cathodes to deliver superior cycling stability,better than most currently-reported anode-free ZIBs.This work provides new thinking in constructing high-performance anode-free ZIBs and promotes the development of ZIBs.
基金Project(50971012) supported by the National Natural Science Foundation of China
文摘The isothermal oxidation behaviors of three kinds of Ni3Al-Mo based alloys at 1150 ℃ were studied.The morphology,structure and element distribution of oxide scales of the alloys were researched by scanning electron microscopy,X-ray diffraction and electron probe microanalysis.The research results show that there are three oxide layers,an outer layer of NiO,an intermediate layer mainly composed of NiO,NiAl2O4 and a small amount of NiMoO4,and an inner layer of NiAl2O4 and Al2O3.Re element was mainly distributed in the intermediate layer,which plays a role as "diffusion barrier" in the process of oxidation,and effectively reduces the diffusion rate of Al and Mo elements outward and diffusion rate of O element inward.As a result,a Al-rich oxide layer formed in the inner layer inhibits the growth of oxide layer and improves the oxidation resistance of the alloy.
文摘The nucleation and growth of grains in a series of Al-based alloys produced by electrolysis are observed under SEM. The atomic Ti/AI ratios of the nuclei and the distribution of Ti at certain points are analyzed by point EDS. The particles in different atomic Ti/AI ratios might act as the nuclei of α-Al. At the early stage of growth, the spherical Ti-enriched regions might form around these particles within very limited temperature ranges in which the reactions such as the peritectic reactions etc occur. At the latter stage of growth, the dendrites freely develop in the radial orientations, and the concentration of Ti decreases linearly along the dendrite arm and becomes negligible in the region near the periphery of the dendrite. It is believed that the nucleation is closely related with the number and dispersion of primary spherical areas in the melts, and the segregation of Ti leads to the free growth of dendrite, which is necessary for the formation of equiaxial grains.
文摘The tribological behaviors of TiN coating and TiN+TiC+Ti(C, N)/diamond like carbon (DLC), TiN/DLC, TiC/DLC multilayers on Ti 6Al 4V alloy prepared by plasma based ion implantation (PBII) were compared. Under the test conditions of counterbody AISI 52100, load 1 N and speed 0.05 m/s, the tribological properties of the alloy are improved by these films in the order of TiN, TiC/DLC, TiN/DLC and TiN+TiC+Ti(C,N)/DLC. Tribological behavior is affected by the conditions of surface modification and triboexperiments. The appearance of “peaks” in the wear dynamic resistance profiles may be due or correspond to the process of formation and breaking apart of transition films. The breakthrough of the DLC coated samples may start from partially wearing out, and end with joining piece dilamination. There are transition films on all counterbodies AISI 52100. When AISI 52100 counterbody is changed to Ti 6Al 4V, the wear of most modified samples is changed from only disc to both disc and ball abrasive dominated.
基金supported by the Primary Research&Developement Plan of Jiangsu Province(BE2017168)
文摘To quantify the nonuniform micromechanical performance of welded joint,the load-displacement curves by nanoindentation test were introduced to examine different zones including base metal,coarse grained heat affected zone,partially melted zone,weld metal near the fusion boundary and weld metal center.The results showed that the strengthening effect of weld metal was more obvious than that of heat affected zone for nickel based welded joint and especially in coarse grained heat affected zone,the hardening resulted from overheating was not apparent.Nickel based weld metal with high content of alloying elements which were often segregated at interdendritic regions or precipitated in grain interior under nonequilibrium solidification contributed to the characteristics that differ from conventional low alloy steel welded joint.