aluminum alloy was implanted with nitrogen then titanium finally carbon by plasma-based ion implantatio to form a gradient layer. The structure and tribological properties of the layer were investigated. Its compositi...aluminum alloy was implanted with nitrogen then titanium finally carbon by plasma-based ion implantatio to form a gradient layer. The structure and tribological properties of the layer were investigated. Its composition profiles and chemical states were analyzed with X-ray photoelectron spectroscopy(XPS). The surface carbon layer was analyzed by Raman spectrum. The appearances were observed by atomic force microscope (AFM). The surface hardness was measured with the mechanical property microprobe. The dry wear tests against GCr15 steel ball at various sliding loads were performed with a ball-on-disk wear tester in ambient environment. The results show that the thickness of the modified layer is 1 200 nm, the carbon layer is a smooth and compact diamond-like carbon(DLC) films, and the carbon-titanium interface is broadened due to carbon ions implantation, resulting in a good composition and structure transition between DLC films and titanium layer. Surface hardness is improved markedly, with a slow and uniform change. Tribological properties are improved greatly although they reduce with the increase of sliding loads because the modified layer becomes thin rapidly.展开更多
The corrosion behavior of coatings of pure zinc and Zn-Al,Zn-Al-RE alloys in NaCl solu- tions was studied by salt-spray experiments,even corrosion experiments and electrochemical measurements of bi-directional polariz...The corrosion behavior of coatings of pure zinc and Zn-Al,Zn-Al-RE alloys in NaCl solu- tions was studied by salt-spray experiments,even corrosion experiments and electrochemical measurements of bi-directional polarization curves and a.c.impedance in weak polarization region consistent regularities were obtained by these different methods,viz.,the corrosion resistance of Zn could be enhanced by alloying it with Al,and particularly with Al-RE.The causes of enhancement of corrosion resistance by RE were also discussed.展开更多
ZA27 alloy has the best performance and the widest applications in high aluminum zinc based die casting alloy series. One of its main applica-tions is used as abrasion resistant alloy,instead of nonferrous alloys such...ZA27 alloy has the best performance and the widest applications in high aluminum zinc based die casting alloy series. One of its main applica-tions is used as abrasion resistant alloy,instead of nonferrous alloys such as copper alloy.The frictional wear p展开更多
The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the comp...The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the composition of such chromate passive film was S 5 5, Na 3 4, C 11 8, Ti 7 9, O 41 6, Cr 13 7, Zn 16 0.展开更多
The temperature of aluminum alloy work-pieces in the aging furnace directly affects the quality of aluminum alloy products. Since the temperature of aluminum alloy work-pieces cannot be measured directly, a temperatur...The temperature of aluminum alloy work-pieces in the aging furnace directly affects the quality of aluminum alloy products. Since the temperature of aluminum alloy work-pieces cannot be measured directly, a temperature prediction model based on improved case-based reasoning (CBR) method is established to realize the online measurement of the work-pieces temperature. More specifically, the model is constructed by an advanced case-based reasoning method in which a state transition algorithm (STA) is firstly used to optimize the weights of feature attributes. In other words, STA is utilized to find the suitable attribute weights of the CBR model that can improve the accuracy of the case retrieval process. Finally, the CBR model based on STA (STCBR) was applied to predict the temperature of aluminum alloy work-pieces in the aging furnace. The results of the experiments indicated that the developed model can realize high-accuracy prediction of work-pieces temperature and it has good application prospects in the industrial field.展开更多
Base on a vast amount of testing and calculations for the welding thermal cycling curves of different testing points in fusion welding (TIG welding, gas welding) HAZ of zinc-based alloy with low melting points, this p...Base on a vast amount of testing and calculations for the welding thermal cycling curves of different testing points in fusion welding (TIG welding, gas welding) HAZ of zinc-based alloy with low melting points, this paper defines the welding thermal cycle parameters of microstructure stimulation of HAZ by zinc-based alloy fusion welding process. On the principle of which the microstrnct,are and harkness of the testing points in simulation specimens are basically correspondence with that of actual welding HAZ, the microstructure simulation of testing points Tm=370O℃. 305℃) of ZA12 alloy by fusion welding is carried out by the means of omhic-heating welding thermal simulation tester. The study results of the abrasion-resistance of simulation specimens HAZ by fusion welding process indicates that the abmsion-resistance is closely related to the form of eutectoid microstructure in or in the structure.展开更多
A protecting zinc and aluminum coating on the surface of AZ91D magnesium alloys was obtained by thermal spraying to improve the corrosion and wear resistance performances. In order to enhance the combination between m...A protecting zinc and aluminum coating on the surface of AZ91D magnesium alloys was obtained by thermal spraying to improve the corrosion and wear resistance performances. In order to enhance the combination between magnesium alloy matrix and zinc and aluminum coating, the sample was heat-treated at 300℃for 2 h, then, the cross-section patterns, XRD pattern, micro-hardness, wear and corrosion resistance abilities were researched. The results indicate that the interface between the coating and substrate is metallurgical bond, and a transitional fusion layer is formed by diffusion. The micro-scale abrasion test and polarization test in 3% NaCl solution show that the diffusion-treated specimen has better wear and corrosion resistance performances in comparison with the undiffusion-treated and substrate magnesium alloys; in addition, it has relatively higher micro-hardness than the undiffusion-treated magnesium alloys.展开更多
aluminum alloy was implanted with nitrogen then titanium at different titanium target sputtering currents by plasma-based ion implantation(PBII). The appearances were observed by atomic force microscope, and the surfa...aluminum alloy was implanted with nitrogen then titanium at different titanium target sputtering currents by plasma-based ion implantation(PBII). The appearances were observed by atomic force microscope, and the surface hardness was measured with Knoop hardness tester and the mechanical property microprobe. Ball-on-disc dry wear experiments were performed under ambient air conditions, to study the tribological properties of the modified layers against GCr15 steel ball, employing various loads and a constant sliding speed. After dual modifications, surface hardness at 100 nm depth could reach to 9 GPa, increasing by about 5 times; tribological properties at lower load(e.g. 1 N) were obviously improved, with the friction coefficient(below 0.2) decreasing by over 60%, and the wear life(800 times) increasing by about 5 times. Meanwhile, with the increase of the sputtering current, the appearance is smooth, the surface hardness tends to a slow and even variation, the wear life presents a parabola-like change, and the friction coefficient and the adhesive wear degree decrease. However, tribological properties are reduced with the increase of the load due to the modified layer rapidly getting thin.展开更多
Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (...Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2·4H2O (hopeite) and AlPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by polarization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s.展开更多
The effect of Al, Zn, Sn, Mn, Si and Ni on the color characteristics of binary copper-base alloys has been researched systematically and quantitatively. The results show that all alloying elements decrease the red con...The effect of Al, Zn, Sn, Mn, Si and Ni on the color characteristics of binary copper-base alloys has been researched systematically and quantitatively. The results show that all alloying elements decrease the red content of an alloy at different levels but have different effects on the yellow color. Al and Zn enhance the yellow content of an alloy, whereas Sn, Mn, Si and Ni decrease the yellow content. When the alloys with different karat gold colors are imitated, Al and Zn are the most important color mixing elements and Sn, Mn, Si and Ni can be used as auxiliary.展开更多
The aluminothermic reduction of zinc oxide(ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content ...The aluminothermic reduction of zinc oxide(ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content of Mg within molten Al, which decreases the surface tension of the molten metal and conversely increases the wettability of ZnO particles. The effect of initial Mg concentration on the aluminothermic reduction rate of ZnO was analyzed at the following values: 0.90wt%, 1.20wt%, 4.00t%, 4.25wt%, and 4.40wt%. The ZnO particles were incorporated by mechanical agitation using a graphite paddle inside a bath of molten Al maintained at a constant temperature of 1123 K and at a constant agitation speed of 250 r/min, the treatment time was 240 min and the ZnO particle size was 450?500 mesh. The results show an increase in Zn concentration in the prepared alloys up to 5.43wt% for the highest initial concentration of Mg. The reaction products obtained were characterized by scanning electron microscopy and X-ray diffraction, and the efficiency of the reaction was measured on the basis of the different concentrations of Mg studied.展开更多
背景:锌基合金医用植入材料有优异的力学性能、完全可降解性、良好的生物相容性,主要用于骨科植入物、心血管支架、胆管支架、气管支架、神经导管等。目的:综述可降解锌基合金应用于骨缺损修复的研究进展,展望锌基材料可期研究方向与成...背景:锌基合金医用植入材料有优异的力学性能、完全可降解性、良好的生物相容性,主要用于骨科植入物、心血管支架、胆管支架、气管支架、神经导管等。目的:综述可降解锌基合金应用于骨缺损修复的研究进展,展望锌基材料可期研究方向与成果。方法:检索PubMed、Web of Science、万方及中国知网数据库,选择各数据库建库至2023年6月收录的各类可降解锌基合金用于骨植入材料研究的相关文献,对生物可降解锌基合金的基本特性进行概述,对锌基合金促进骨组织修复作用进行梳理和归纳总结,讨论当前的研究热点与不足。结果与结论:①锌基合金具备良好的生物相容性,以锌基合金为基体材料,借助支架结构构建技术和涂层优化工艺将有效提高锌基合金的骨传导性,并且使其降解产物具备高效骨诱导性,以调控成骨、破骨细胞的基因表达,促进骨缺损后的修复重建;②然而在锌基合金优化的研究中,涂层工艺相对不足,增材负载技术尚缺乏;③锌基合金拥有良好的机械、生物特性,通过特殊工艺可增加材料的骨传导性、骨诱导性以有效提高其促进骨修复重建能力,并有望进一步实现个性化移植材料的研发。优化涂层与增材负载等技术融合于锌基合金的研究有待进一步探讨。展开更多
基于热锻条件,使用销-盘摩擦设备对6061热锻铝合金和H13钢基自润滑模具材料进行了高温对磨实验,通过电子探针和能谱仪分析了不同工况下工件和模具的磨损机理。结果表明,随着载荷的增加,工件和模具之间的摩擦因数与磨损率先降低后升高;...基于热锻条件,使用销-盘摩擦设备对6061热锻铝合金和H13钢基自润滑模具材料进行了高温对磨实验,通过电子探针和能谱仪分析了不同工况下工件和模具的磨损机理。结果表明,随着载荷的增加,工件和模具之间的摩擦因数与磨损率先降低后升高;随着转速的增加,工件和模具之间的摩擦因数增大,磨损率呈倍数增加;当载荷为12 N、转速为100 r·min^(-1)时,工件和模具之间的摩擦因数最小,其值为0.416,磨损率仅为24.591 mm 3·N^(-1)·m^(-1);随着转速和载荷的增加,工件和模具之间的粘着磨损加重并且逐渐出现磨粒磨损和氧化磨损。展开更多
文摘aluminum alloy was implanted with nitrogen then titanium finally carbon by plasma-based ion implantatio to form a gradient layer. The structure and tribological properties of the layer were investigated. Its composition profiles and chemical states were analyzed with X-ray photoelectron spectroscopy(XPS). The surface carbon layer was analyzed by Raman spectrum. The appearances were observed by atomic force microscope (AFM). The surface hardness was measured with the mechanical property microprobe. The dry wear tests against GCr15 steel ball at various sliding loads were performed with a ball-on-disk wear tester in ambient environment. The results show that the thickness of the modified layer is 1 200 nm, the carbon layer is a smooth and compact diamond-like carbon(DLC) films, and the carbon-titanium interface is broadened due to carbon ions implantation, resulting in a good composition and structure transition between DLC films and titanium layer. Surface hardness is improved markedly, with a slow and uniform change. Tribological properties are improved greatly although they reduce with the increase of sliding loads because the modified layer becomes thin rapidly.
文摘The corrosion behavior of coatings of pure zinc and Zn-Al,Zn-Al-RE alloys in NaCl solu- tions was studied by salt-spray experiments,even corrosion experiments and electrochemical measurements of bi-directional polarization curves and a.c.impedance in weak polarization region consistent regularities were obtained by these different methods,viz.,the corrosion resistance of Zn could be enhanced by alloying it with Al,and particularly with Al-RE.The causes of enhancement of corrosion resistance by RE were also discussed.
文摘ZA27 alloy has the best performance and the widest applications in high aluminum zinc based die casting alloy series. One of its main applica-tions is used as abrasion resistant alloy,instead of nonferrous alloys such as copper alloy.The frictional wear p
文摘The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the composition of such chromate passive film was S 5 5, Na 3 4, C 11 8, Ti 7 9, O 41 6, Cr 13 7, Zn 16 0.
文摘The temperature of aluminum alloy work-pieces in the aging furnace directly affects the quality of aluminum alloy products. Since the temperature of aluminum alloy work-pieces cannot be measured directly, a temperature prediction model based on improved case-based reasoning (CBR) method is established to realize the online measurement of the work-pieces temperature. More specifically, the model is constructed by an advanced case-based reasoning method in which a state transition algorithm (STA) is firstly used to optimize the weights of feature attributes. In other words, STA is utilized to find the suitable attribute weights of the CBR model that can improve the accuracy of the case retrieval process. Finally, the CBR model based on STA (STCBR) was applied to predict the temperature of aluminum alloy work-pieces in the aging furnace. The results of the experiments indicated that the developed model can realize high-accuracy prediction of work-pieces temperature and it has good application prospects in the industrial field.
文摘Base on a vast amount of testing and calculations for the welding thermal cycling curves of different testing points in fusion welding (TIG welding, gas welding) HAZ of zinc-based alloy with low melting points, this paper defines the welding thermal cycle parameters of microstructure stimulation of HAZ by zinc-based alloy fusion welding process. On the principle of which the microstrnct,are and harkness of the testing points in simulation specimens are basically correspondence with that of actual welding HAZ, the microstructure simulation of testing points Tm=370O℃. 305℃) of ZA12 alloy by fusion welding is carried out by the means of omhic-heating welding thermal simulation tester. The study results of the abrasion-resistance of simulation specimens HAZ by fusion welding process indicates that the abmsion-resistance is closely related to the form of eutectoid microstructure in or in the structure.
基金Projects(2005BB4079, 2004BA4002) supported by the Natural Science Foundation of Chongqing City,China
文摘A protecting zinc and aluminum coating on the surface of AZ91D magnesium alloys was obtained by thermal spraying to improve the corrosion and wear resistance performances. In order to enhance the combination between magnesium alloy matrix and zinc and aluminum coating, the sample was heat-treated at 300℃for 2 h, then, the cross-section patterns, XRD pattern, micro-hardness, wear and corrosion resistance abilities were researched. The results indicate that the interface between the coating and substrate is metallurgical bond, and a transitional fusion layer is formed by diffusion. The micro-scale abrasion test and polarization test in 3% NaCl solution show that the diffusion-treated specimen has better wear and corrosion resistance performances in comparison with the undiffusion-treated and substrate magnesium alloys; in addition, it has relatively higher micro-hardness than the undiffusion-treated magnesium alloys.
文摘aluminum alloy was implanted with nitrogen then titanium at different titanium target sputtering currents by plasma-based ion implantation(PBII). The appearances were observed by atomic force microscope, and the surface hardness was measured with Knoop hardness tester and the mechanical property microprobe. Ball-on-disc dry wear experiments were performed under ambient air conditions, to study the tribological properties of the modified layers against GCr15 steel ball, employing various loads and a constant sliding speed. After dual modifications, surface hardness at 100 nm depth could reach to 9 GPa, increasing by about 5 times; tribological properties at lower load(e.g. 1 N) were obviously improved, with the friction coefficient(below 0.2) decreasing by over 60%, and the wear life(800 times) increasing by about 5 times. Meanwhile, with the increase of the sputtering current, the appearance is smooth, the surface hardness tends to a slow and even variation, the wear life presents a parabola-like change, and the friction coefficient and the adhesive wear degree decrease. However, tribological properties are reduced with the increase of the load due to the modified layer rapidly getting thin.
基金supported by the Natural Science Foundation of Henan Province (200510476009)
文摘Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2·4H2O (hopeite) and AlPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by polarization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s.
基金Financially supported by China National Gold Management Bureau for basic theory research
文摘The effect of Al, Zn, Sn, Mn, Si and Ni on the color characteristics of binary copper-base alloys has been researched systematically and quantitatively. The results show that all alloying elements decrease the red content of an alloy at different levels but have different effects on the yellow color. Al and Zn enhance the yellow content of an alloy, whereas Sn, Mn, Si and Ni decrease the yellow content. When the alloys with different karat gold colors are imitated, Al and Zn are the most important color mixing elements and Sn, Mn, Si and Ni can be used as auxiliary.
基金the support provided for the development of this research from Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico NacionalConsejo Nacional de Ciencia y Tecnologia (Project CB 81251)
文摘The aluminothermic reduction of zinc oxide(ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content of Mg within molten Al, which decreases the surface tension of the molten metal and conversely increases the wettability of ZnO particles. The effect of initial Mg concentration on the aluminothermic reduction rate of ZnO was analyzed at the following values: 0.90wt%, 1.20wt%, 4.00t%, 4.25wt%, and 4.40wt%. The ZnO particles were incorporated by mechanical agitation using a graphite paddle inside a bath of molten Al maintained at a constant temperature of 1123 K and at a constant agitation speed of 250 r/min, the treatment time was 240 min and the ZnO particle size was 450?500 mesh. The results show an increase in Zn concentration in the prepared alloys up to 5.43wt% for the highest initial concentration of Mg. The reaction products obtained were characterized by scanning electron microscopy and X-ray diffraction, and the efficiency of the reaction was measured on the basis of the different concentrations of Mg studied.
文摘背景:锌基合金医用植入材料有优异的力学性能、完全可降解性、良好的生物相容性,主要用于骨科植入物、心血管支架、胆管支架、气管支架、神经导管等。目的:综述可降解锌基合金应用于骨缺损修复的研究进展,展望锌基材料可期研究方向与成果。方法:检索PubMed、Web of Science、万方及中国知网数据库,选择各数据库建库至2023年6月收录的各类可降解锌基合金用于骨植入材料研究的相关文献,对生物可降解锌基合金的基本特性进行概述,对锌基合金促进骨组织修复作用进行梳理和归纳总结,讨论当前的研究热点与不足。结果与结论:①锌基合金具备良好的生物相容性,以锌基合金为基体材料,借助支架结构构建技术和涂层优化工艺将有效提高锌基合金的骨传导性,并且使其降解产物具备高效骨诱导性,以调控成骨、破骨细胞的基因表达,促进骨缺损后的修复重建;②然而在锌基合金优化的研究中,涂层工艺相对不足,增材负载技术尚缺乏;③锌基合金拥有良好的机械、生物特性,通过特殊工艺可增加材料的骨传导性、骨诱导性以有效提高其促进骨修复重建能力,并有望进一步实现个性化移植材料的研发。优化涂层与增材负载等技术融合于锌基合金的研究有待进一步探讨。
文摘基于热锻条件,使用销-盘摩擦设备对6061热锻铝合金和H13钢基自润滑模具材料进行了高温对磨实验,通过电子探针和能谱仪分析了不同工况下工件和模具的磨损机理。结果表明,随着载荷的增加,工件和模具之间的摩擦因数与磨损率先降低后升高;随着转速的增加,工件和模具之间的摩擦因数增大,磨损率呈倍数增加;当载荷为12 N、转速为100 r·min^(-1)时,工件和模具之间的摩擦因数最小,其值为0.416,磨损率仅为24.591 mm 3·N^(-1)·m^(-1);随着转速和载荷的增加,工件和模具之间的粘着磨损加重并且逐渐出现磨粒磨损和氧化磨损。