期刊文献+
共找到1,685篇文章
< 1 2 85 >
每页显示 20 50 100
Recent Advances in Aqueous Zn||MnO_(2)Batteries
1
作者 Chuan Li Rong Zhang +3 位作者 Huilin Cui Yanbo Wang Guojin Liang Chunyi Zhi 《Transactions of Tianjin University》 EI CAS 2024年第1期27-39,共13页
Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,a... Recently,rechargeable aqueous zinc-based batteries using manganese oxide as the cathode(e.g.,MnO_(2))have gained attention due to their inherent safety,environmental friendliness,and low cost.Despite their potential,achieving high energy density in Zn||MnO_(2)batteries remains challenging,highlighting the need to understand the electrochemical reaction mechanisms underlying these batteries more deeply and optimize battery components,including electrodes and electrolytes.This review comprehensively summarizes the latest advancements for understanding the electrochemistry reaction mechanisms and designing electrodes and electrolytes for Zn||MnO_(2)batteries in mildly and strongly acidic environments.Furthermore,we highlight the key challenges hindering the extensive application of Zn||MnO_(2)batteries,including high-voltage requirements and areal capacity,and propose innovative solutions to overcome these challenges.We suggest that MnO_(2)/Mn^(2+)conversion in neutral electrolytes is a crucial aspect that needs to be addressed to achieve high-performance Zn||MnO_(2)batteries.These approaches could lead to breakthroughs in the future development of Zn||MnO_(2)batteries,off ering a more sustainable,costeff ective,and high-performance alternative to traditional batteries. 展开更多
关键词 Aqueous Zn||MnO_(2)batteries Zinc-ion batteries Zinc batteries MnO_(2)
下载PDF
One-pot Synthesis of Hierarchical Flower-like WS_(2) Microspheres as Anode Materials for Lithium-ion Batteries
2
作者 张向华 TAN Hen +1 位作者 WANG Ze XUE Maoquan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期1-6,共6页
3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spec... 3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spectroscopy (EDS),scanning electron microscopy (SEM) and Raman.SEM images of the samples reveal that the hierarchical flowerlike WS_(2) microspheres with diameters of about 3-5μm are composed of a number of curled nanosheets.Electrochemical tests such as charge/discharge,cyclic voltammetry,cycle life and rate performance were carried out on the WS_(2) sample.As an anode material for lithium-ion batteries,hierarchical flowerlike WS_(2) microspheres show excellent electrochemical performance.At a current density of100 mA·g^(-1),a high specific capacity of 647.8 mA·h·g^(-1) was achieved after 120 discharge/charge cycles.The excellent electrochemical performance of WS_(2) as an anode material for lithium-ion batteries can be attributed to its special 3D hierarchical structure. 展开更多
关键词 WS_(2) MICROSPHERES lithium-ion batteries electrochemical performance
下载PDF
Mitigating Lattice Distortion of High‑Voltage LiCoO_(2)via Core‑Shell Structure Induced by Cationic Heterogeneous Co‑Doping for Lithium‑Ion Batteries
3
作者 Zezhou Lin Ke Fan +9 位作者 Tiancheng Liu Zhihang Xu Gao Chen Honglei Zhang Hao Li Xuyun Guo Xi Zhang Ye Zhu Peiyu Hou Haitao Huang 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期169-182,共14页
Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since ... Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since the low diffusivity ions such as Ti^(4+)will be concentrated on grain boundaries,which hinders the grain growth.In order to synthesize large single-crystal layered oxide cathodes,considering the different diffusivities of different dopant ions,we propose a simple two-step multi-element co-doping strategy to fabricate core–shell structured LiCoO_(2)(CS-LCO).In the current work,the high-diffusivity Al^(3+)/Mg^(2+)ions occupy the core of single-crystal grain while the low diffusivity Ti^(4+)ions enrich the shell layer.The Ti^(4+)-enriched shell layer(~12 nm)with Co/Ti substitution and stronger Ti–O bond gives rise to less oxygen ligand holes.In-situ XRD demonstrates the constrained contraction of c-axis lattice parameter and mitigated structural distortion.Under a high upper cut-off voltage of 4.6 V,the single-crystal CS-LCO maintains a reversible capacity of 159.8 mAh g^(−1)with a good retention of~89%after 300 cycles,and reaches a high specific capacity of 163.8 mAh g^(−1)at 5C.The proposed strategy can be extended to other pairs of low-(Zr^(4+),Ta^(5+),and W6+,etc.)and high-diffusivity cations(Zn^(2+),Ni^(2+),and Fe^(3+),etc.)for rational design of advanced layered oxide core–shell structured cathodes for lithium-ion batteries. 展开更多
关键词 Lithium-ion battery LiCoO_(2) Heterogeneous co-doping Core-shell structure High-voltage stability
下载PDF
Discovering Cathodic Biocompatibility for Aqueous Zn–MnO_(2) Battery:An Integrating Biomass Carbon Strategy
4
作者 Wei Lv Zilei Shen +10 位作者 Xudong Li Jingwen Meng Weijie Yang Fang Ding Xing Ju Feng Ye Yiming Li Xuefeng Lyu Miaomiao Wang Yonglan Tian Chao Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期111-126,共16页
Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future.Therefore,γ-MnO_(2) uniformly loaded on N-doped carbon... Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future.Therefore,γ-MnO_(2) uniformly loaded on N-doped carbon derived from grapefruit peel is successfully fabricated in this work,and particularly the composite cathode with carbon carrier quality percentage of 20 wt%delivers the specific capacity of 391.2 mAh g^(−1)at 0.1 A g^(−1),outstanding cyclic stability of 92.17%after 3000 cycles at 5 A g^(−1),and remarkable energy density of 553.12 Wh kg^(−1) together with superior coulombic efficiency of~100%.Additionally,the cathodic biosafety is further explored specifically through in vitro cell toxicity experiments,which verifies its tremendous potential in the application of clinical medicine.Besides,Zinc ion energy storage mechanism of the cathode is mainly discussed from the aspects of Jahn–Teller effect and Mn domains distribution combined with theoretical analysis and experimental data.Thus,a novel perspective of the conversion from biomass waste to biocompatible Mn-based cathode is successfully developed. 展开更多
关键词 Aqueous Zn-ion batteries BIOCOMPATIBILITY Jahn-Teller effect Mn domains γ-MnO_(2)
下载PDF
Evolution of the porous structure for phosphoric acid etching carbon as cathodes in Li–O_(2) batteries:Pyrolysis temperature-induced characteristics changes
5
作者 Feiyang Yang Ying Yao +6 位作者 Yunkai Xu Cong Wang Meiling Wang Jingjie Ren Cunzhong Zhang Feng Wu Jun Lu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期172-181,共10页
Although biomass-derived carbon(biochar)has been widely used in the energy field,the relation between the carbonization condition and the physical/chemical property of the product remains elusive.Here,we revealed the ... Although biomass-derived carbon(biochar)has been widely used in the energy field,the relation between the carbonization condition and the physical/chemical property of the product remains elusive.Here,we revealed the carbonization condition's effect on the morphology,surface property,and electrochemical performance of the obtained carbon.An open slit pore structure with shower-puff-like nanoparticles can be obtained by finely tuning the carbonization temperature,and its unique pore structure and surface properties enable the Li–O_(2) battery with cycling longevity(221 cycles with 99.8%Coulombic efficiency at 0.2 mA cm^(−2) and controlled discharge–charge depths of 500 mAh g^(−1))and high capacity(16,334 mAh g^(−1) at 0.02 mA cm^(−2)).This work provides a greater understanding of the mechanism of the biochar carbonization procedure under various pyrolysis conditions,paving the way for future study of energy storage devices. 展开更多
关键词 BIOMASS Li-O_(2) battery oxygen catalysts porous carbon temperature parameters
下载PDF
VSe_(2)/V_(2)C heterocatalyst with built-in electric field for efficient lithium-sulfur batteries:Remedies polysulfide shuttle and conversion kinetics
6
作者 Yanwei Lv Lina Bai +7 位作者 Qi Jin Siyu Deng Xinzhi Ma Fengfeng Han Juan Wang Lirong Zhang Lili Wu Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期397-409,I0010,共14页
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou... Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries. 展开更多
关键词 Li-S battery Shuttle effect Separator modifier VSe_(2)/V_(2)C heterostructure Built-in electric field
下载PDF
The initial stages of Li_(2)O_(2) formation during oxygen reduction reaction in Li-O_(2) batteries:The significance of Li_(2)O_(2) in charge-transfer reactions within devices
7
作者 Daniela M.Josepetti Bianca P.Sousa +2 位作者 Simone A.J.Rodrigues Renato G.Freitas Gustavo Doubek 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期223-231,I0006,共10页
Lithium-oxygen batteries are a promising technology because they can greatly surpass the energy density of lithium-ion batteries.However,this theoretical characteristic has not yet been converted into a real device wi... Lithium-oxygen batteries are a promising technology because they can greatly surpass the energy density of lithium-ion batteries.However,this theoretical characteristic has not yet been converted into a real device with high cyclability.Problems with air contamination,metallic lithium reactivity,and complex discharge and charge reactions are the main issues for this technology.A fast and reversible oxygen reduction reaction(ORR)is crucial for good performance of secondary batteries',but the partial knowledge of its mechanisms,especially when devices are concerned,hinders further development.From this perspective,the present work uses operando Raman experiments and electrochemical impedance spectroscopy(EIS)to assess the first stages of the discharge processes in porous carbon electrodes,following their changes cycle by cycle at initial operation.A growth kinetic formation of the discharge product signal(Li_(2)O_(2))was observed with operando Raman,indicating a first-order reaction and enabling an analysis by a microkinetic model.The solution mechanism in the evaluated system was ascribed for an equivalent circuit with three time constants.While the time constant for the anode interface reveals to remain relatively constant after the first discharge,its surface seemed to be more non-uniform.The model indicated that the reaction occurs at the Li_(2)O_(2) surface,decreasing the associated resistance during the initial discharge phase.Furthermore,the growth of Li_(2)O_(2) forms a hetero-phase between Li_(2)O_(2)/electrolyte,while creating a more compact and homogeneous on the Li_(2)O_(2)/cathode surface.The methodology here described thus offers a way of directly probing changes in surface chemistry evolution during cycling from a device through EIS analysis. 展开更多
关键词 Li-O_(2)battery Operando Raman analysis Equivalent circuit modeling Time-constant distribution
下载PDF
Two-dimensional layered In_(2)P_(3)S_(9): A novel superior anode material for sodium-ion batteries
8
作者 Longsheng Zhong Hongneng Chen +4 位作者 Yanzhe Sheng Yiting Sun Yanhe Xiao Baochang Cheng Shuijin Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期294-304,I0008,共12页
Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-di... Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries. 展开更多
关键词 Metal thiophosphate In_(2)P_(3)S_(9) Anode material Sodium-ion battery Full cell
下载PDF
Review and prospects on the low-voltage Na_(2)Ti_(3)O_(7) anode materials for sodium-ion batteries
9
作者 Jun Dong Yalong Jiang +3 位作者 Ruxing Wang Qiulong Wei Qinyou An Xiaoxing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期446-460,I0011,共16页
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in... Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs. 展开更多
关键词 Sodium-ion batteries Low-voltage anode materials Na_(2)Ti_(3)O_(7) Electrochemical performances Electrochemical mechanism
下载PDF
电流密度、温度、阴极孔隙率和N_(2)溶解度因子对Li-N_(2)电池放电性能的影响
10
作者 赵旭东 薛红涛 汤富领 《可再生能源》 CAS CSCD 北大核心 2024年第1期9-15,共7页
Li-N_(2)电池是一种具有电化学固氮功能的新型储能系统,文章利用有限元软件COMSOL耦合多物理场建立的电化学模型能揭示各因素对其放电性能的影响。模拟结果表明:放电电流密度、温度、阴极孔隙率和电解液中的N_(2)溶解度因子对Li-N_(2)... Li-N_(2)电池是一种具有电化学固氮功能的新型储能系统,文章利用有限元软件COMSOL耦合多物理场建立的电化学模型能揭示各因素对其放电性能的影响。模拟结果表明:放电电流密度、温度、阴极孔隙率和电解液中的N_(2)溶解度因子对Li-N_(2)电池的放电性能均有影响;较大的放电电流密度会降低该电池的电压和容量;阴极孔隙率和电解液中的N_(2)溶解度因子是影响该电池电压和容量的关键性因素,提高阴极孔隙率和电解液中的N_(2)溶解度因子均能增加该电池的电压和容量;电池放电的平台电压随温度升高而升高,但放电容量几乎不受温度影响。 展开更多
关键词 Li-N_(2)电池 有限元分析 COMSOL 放电过程
下载PDF
Sb_(2)S_(3)/石墨烯负极材料的制备及其储钠性能研究
11
作者 王旭 杨观华 +2 位作者 李翼宏 张志国 张杰 《广西科技大学学报》 CAS 2024年第1期106-112,共7页
钠离子电池(sodium-ion batteries,SIBs)具有成本低的潜在优势,有望成为替代锂离子电池(lithium ion batteries,LIBs)的储能设备。为提升钠离子电池的性能,开发出适应钠离子脱嵌的负极材料尤为重要。硫化锑(Sb_(2)S_(3))因其理论比容量... 钠离子电池(sodium-ion batteries,SIBs)具有成本低的潜在优势,有望成为替代锂离子电池(lithium ion batteries,LIBs)的储能设备。为提升钠离子电池的性能,开发出适应钠离子脱嵌的负极材料尤为重要。硫化锑(Sb_(2)S_(3))因其理论比容量高被认为是较好的钠离子电池负极材料。本文使用简单水热法将Sb_(2)S_(3)与石墨烯复合,制备Sb_(2)S_(3)/石墨烯复合材料(Sb_(2)S_(3)/Gr)。结果表明:Sb_(2)S_(3)/Gr作为钠离子电池负极时,不仅表现出良好的电导率(3.5×10~(-3)S/cm)和钠离子扩散速率(4.853×10~(-13)cm~2/s),而且在0.5 A/g的电流密度下,首圈库伦效率为76.27%,经150次循环后的比容量稳定在488 m A·h/g,表现出较高的比容量。Sb_(2)S_(3)/Gr复合材料表现出了极大的应用潜力,为高性能钠离子电池负极材料的研发提供了一定的参考价值。 展开更多
关键词 钠离子电池 硫化锑(Sb_(2)S_(3)) 石墨烯 负极材料
下载PDF
水系铵离子电池β-MnO_(2)正极材料的制备及性能研究
12
作者 刘扬 陈晗 +1 位作者 向凯雄 周伟 《湖南工业大学学报》 2024年第1期78-83,共6页
通过简单的水热法合成了隧道型β-MnO_(2)正极材料并应用于水系铵离子电池,并采用1 mol/L(NH4)2SO4水系电解液,在窗口电压为0~1.6 V范围内,测试其电化学性能。实验结果表明:β-MnO_(2)正极材料在0.1A/g电流密度下表现出109.8 mAh/g放电... 通过简单的水热法合成了隧道型β-MnO_(2)正极材料并应用于水系铵离子电池,并采用1 mol/L(NH4)2SO4水系电解液,在窗口电压为0~1.6 V范围内,测试其电化学性能。实验结果表明:β-MnO_(2)正极材料在0.1A/g电流密度下表现出109.8 mAh/g放电比容量,经过140次循环后,其放电比容量仍有101.9 mAh/g,容量保留率为92.8%,库伦效率接近100%,具有优异的循环稳定性能。同时还具有优异的倍率性能,β-MnO_(2)纳米棒正极材料即使在1.0 A/g大电流密度下仍有78.7 mAh/g。此外,通过非原位FTIR、XPS测试探索了其储铵机理,结果表明铵根离子具有良好的可逆性。 展开更多
关键词 水系铵离子电池 β-MnO_(2) 正极材料 水热法
下载PDF
Rationally designed hollow carbon nanospheres decorated with S,P co-doped NiSe_(2) nanoparticles for high-performance potassium-ion and lithium-ion batteries 被引量:1
13
作者 Jiajia Ye Zizhong Chen +4 位作者 Zhiqiang Zheng Zhanghua Fu Guanghao Gong Guang Xia Cheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期401-411,I0011,共12页
Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in seconda... Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in secondary batteries.In this work,hollow carbon(HC) nanospheres embedded with S,P co-doped NiSe_(2)nanoparticles are fabricated by "drop and dry" and "dissolving and precipitation" processes to form Ni(OH)2nanocrystals followed by annealing with S and P dopants to form nanoparticles.The resultant S,P-NiSe_(2)/HC composite exhibits excellent cyclic performance with 131.6 mA h g^(-1)at1000 mA g^(-1)after 3000 cycles for K^(+)storage and a capacity of 417.1 mA h g^(-1)at 1000 mA g^(-1)after1000 cycles for Li^(+)storage.K-ion full cells are assembled and deliver superior cycling stability with a ca pacity of 72.5 mA h g^(-1)at 200 mA g^(-1)after 500 cycles.The hollow carbon shell with excellent electrical conductivity effectively promotes the transporta tion and tolerates large volume variation for both K^(+)and Li^(+).Density functional theory calculations confirm that the S and P co-doping NiSe_(2) enables stronger adsorption of K^(+)ions and higher electrical conductivity that contributes to the improved electrochemical performance. 展开更多
关键词 S P co-doping NiSe_(2)nanoparticles Hollow carbon nanospheres Potassium-ion batteries Lithium-ion batteries
下载PDF
Monolayer MoS_(2)Fabricated by In Situ Construction of Interlayer Electrostatic Repulsion Enables Ultrafast Ion Transport in Lithium-Ion Batteries 被引量:2
14
作者 Meisheng Han Yongbiao Mu +3 位作者 Jincong Guo Lei Wei Lin Zeng Tianshou Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期126-142,共17页
High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS... High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS_(2)lead to unacceptable ion transport capability.Here,we propose in-situ construction of interlayer electrostatic repulsion caused by Co^(2+)substituting Mo^(4+)between MoS_(2)layers,which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS_(2),thus establishing isotropic ion transport paths.Simultaneously,the doped Co atoms change the electronic structure of monolayer MoS_(2),thus improving its intrinsic conductivity.Importantly,the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport.Hence,the Co-doped monolayer MoS_(2)shows ultrafast lithium ion transport capability in half/full cells.This work presents a novel route for the preparation of monolayer MoS_(2)and demonstrates its potential for application in fast-charging lithium-ion batteries. 展开更多
关键词 Monolayer MoS_(2) Interlayer electrostatic repulsion Co atoms doping Surface-capacitance effect Fast-charging lithiumion batteries
下载PDF
Rational construction of Ag@MIL-88B(V)-derived hierarchical porous Ag-V_(2)O_(5) heterostructures with enhanced diffusion kinetics and cycling stability for aqueous zinc-ion batteries 被引量:1
15
作者 Yibo Zhang Zhihua Li +3 位作者 Liangjun Gong Xuyu Wang Peng Hu Jun Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期561-571,I0015,共12页
With the advantages of the multiple oxidation states and highly open crystal structures,vanadium-based composites have been considered as the promising cathode materials for aqueous zinc-ion batteries(ZIBs).However,th... With the advantages of the multiple oxidation states and highly open crystal structures,vanadium-based composites have been considered as the promising cathode materials for aqueous zinc-ion batteries(ZIBs).However,the inherent inferior electrical conductivity,low specific surface area,and sluggish Zn^(2+)diffusion kinetics of the traditional vanadium-based oxides have greatly impeded their development.Herein,a novel hierarchical porous spindle-shaped Ag-V_(2)O_(5) with unique heterostructures was rationally designed via a simple MOF-assisted synthetic method and applied as stable cathode for aqueous ZIBs.The high specific surface area and hierarchically porous superstructures endowed Ag-V_(2)O_(5) with sufficient electrochemical active sites and shortened the diffusion pathways of Zn^(2+),which was beneficial to accelerate the reversible transport of Zn^(2+)and deliver a high specific capacity(426 mA h g^(-1) at 0.1 A g^(-1) and 96.5%capacity retention after 100 cycles).Meanwhile,the self-built-in electric fields at the heterointerface of Ag-V_(2)O_(5) electrode could strengthen the synergistic coupling interaction between Ag and V_(2)O_(5),which can effectively enhance the electric conductivity and maintain the structural integrity,resulting in superb rate capability(326.1 mA h g^(-1) at 5.0 A g^(-1))and remarkable cycling stability(89.7%capacity retention after 2000 cycles at 5.0 A g^(-1)).Moreover,the reversible Zn^(2+)storage mechanism was further investigated and elucidated by kinetics analysis and DFT calculations. 展开更多
关键词 Aqueous zinc-ion batteries Metal-organic frameworks V_(2)O_(5) HETEROSTRUCTURES Nano silver
下载PDF
Computational design of promising 2D electrode materials for Li-ion and Li–S battery applications 被引量:1
16
作者 Ke Fan Yuen Hong Tsang Haitao Huang 《Materials Reports(Energy)》 2023年第3期1-23,共23页
Lithium-ion batteries(LIBs)and lithium-sulfur(Li–S)batteries are two types of energy storage systems with significance in both scientific research and commercialization.Nevertheless,the rational design of electrode m... Lithium-ion batteries(LIBs)and lithium-sulfur(Li–S)batteries are two types of energy storage systems with significance in both scientific research and commercialization.Nevertheless,the rational design of electrode materials for overcoming the bottlenecks of LIBs and Li–S batteries(such as low diffusion rates in LIBs and low sulfur utilization in Li–S batteries)remain the greatest challenge,while two-dimensional(2D)electrodes materials provide a solution because of their unique structural and electrochemical properties.In this article,from the perspective of ab-initio simulations,we review the design of 2D electrode materials for LIBs and Li–S batteries.We first propose the theoretical design principles for 2D electrodes,including stability,electronic properties,capacity,and ion diffusion descriptors.Next,classified examples of promising 2D electrodes designed by theoretical simulations are given,covering graphene,phosphorene,MXene,transition metal sulfides,and so on.Finally,common challenges and a future perspective are provided.This review paves the way for rational design of 2D electrode materials for LIBs and Li–S battery applications and may provide a guide for future experiments. 展开更多
关键词 Lithium-ion batteries Lithium-sulfur batteries 2D electrode materials Computational design
下载PDF
Superior oxygen electrocatalyst derived from metal organic coordination polymers by instantaneous nucleation and epitaxial growth for rechargeable Li-O_(2) battery 被引量:1
17
作者 Dongdong Li Jinbiao Chen +4 位作者 Yingtong Chen Yian Wang Yanpeng Fu Minhua Shao Zhicong Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期169-177,I0005,共10页
Rechargeable aprotic Li-O_(2)batteries have attractea increasing attention due to their extremely high capacity,and it is very important to design appropriate strategies to synthesize efficient catalysts used as oxyge... Rechargeable aprotic Li-O_(2)batteries have attractea increasing attention due to their extremely high capacity,and it is very important to design appropriate strategies to synthesize efficient catalysts used as oxygen cathode.In present work,we present an expedient "instantaneous nucleation and epitaxial growth"(INEG) synthesis strategy for convenient and large-scale synthesis of ultrafine MOCPs nanoparticles(size 50-100 nm) with obvious advantages such as fast synthesis,high yields,low costs and reduced synthetic steps.The bimetallic Ru/Co-MOCPs are further pyrolyzed to obtain bimetallic Coand low content of Ru-based nanoparticles embedded within nitrogen-doped carbon(Ru/Co@N-C) as an efficient catalyst used in Li-O_(2)battery.The Ru/Co@N-C provides porous carbon framework for the ion transportation and O_(2)diffusion,and has large amounts of metal/nonmetal sites as active site to promote the oxygen reduction reaction(ORR)/oxygen evolution reaction(OER) in Li-O_(2)batteries.As a consequence,a high discharge specific capacity of 15246 mA h g^(-1)at 250 mA g^(-1), excellent rate capability at different current densities,and stable overpotential during cycling,are achieved.This work opened up a new understanding for the industrialized synthesis of ultrafine catalysts for Li-O_(2)batteries with excellent structural characteristics and electrochemical performance. 展开更多
关键词 Ultrafine MOCPs Expedient synthesis strategy Derivative Bimetallic sites Rechargeable Li-O_(2)batteries
下载PDF
Long-lasting,reinforced electrical networking in a high-loading Li_(2)S cathode for high-performance lithium–sulfur batteries 被引量:1
18
作者 Hun Kim Kyeong-Jun Min +4 位作者 Sangin Bang Jang-Yeon Hwang Jung Ho Kim Chong SYoon Yang-Kook Sun 《Carbon Energy》 SCIE CSCD 2023年第8期1-14,共14页
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein... Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles. 展开更多
关键词 carbon nanotubes electrical network high energy high loading Li_(2)S cathode lithium-sulfur batteries
下载PDF
Battery Separators Functionalized with Edge-Rich MoS2/C Hollow Microspheres for the Uniform Deposition of Li2S in High-Performance Lithium-Sulfur Batteries 被引量:7
19
作者 Nan Zheng Guangyu Jiang +3 位作者 Xiao Chen Jiayi Mao Nan Jiang Yongsheng Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期104-118,共15页
As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase co... As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase conversion that occurs during the charge-discharge process,particularly the deposition of solid Li2S from the liquid-phase polysulfides,which greatly limits its practical application.In this paper,edge-rich MoS2/C hollow microspheres(Edg-MoS2/C HMs)were designed and used to functionalize separator for Li-S battery,resulting in the uniform deposition of Li2S.The microspheres were fabricated through the facile hydrothermal treatment of MoO3-aniline nanowires and a subsequent carbonization process.The obtained Edg-MoS2/C HMs have a strong chemical absorption capability and high density of Li2S binding sites,and exhibit excellent electrocatalytic performance and can effectively hinder the polysulfide shuttle effect and guide the uniform nucleation and growth of Li2S.Furthermore,we demonstrate that the Edg-MoS2/C HMs can effectively regulate the deposition of Li2S and significantly improve the reversibility of the phase conversion of the active sulfur species,especially at high sulfur loadings and high C-rates.As a result,a cell containing a separator functionalized with Edg-MoS2/C HMs exhibited an initial discharge capacity of 935 mAh g-1 at 1.0 C and maintained a capacity of 494 mAh g-1 after 1000 cycles with a sulfur loading of 1.7 mg cm-2.Impressively,at a high sulfur loading of 6.1 mg cm-2 and high rate of 0.5 C,the cell still delivered a high reversible discharge capacity of 478 mAh g-1 after 300 cycles.This work provides fresh insights into energy storage systems related to complex phase conversions. 展开更多
关键词 Edge-rich MoS2/C Hollow microspheres Li2S Lithium-sulfur BATTERIES
下载PDF
Synergy mechanism of defect engineering in MoS_(2)/FeS_(2)/C heterostructure for high-performance sodium-ion battery
20
作者 Linlin Ma Xiaomei Zhou +9 位作者 Jun Sun Pan Zhang Baoxiu Hou Shuaihua Zhang Ningzhao Shang Jianjun Song Hongjun Ye Hui Shao Yongfu Tang Xiaoxian Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期268-276,I0006,共10页
MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Here... MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Herein,a unique MoS_(2)/FeS_(2)/C heterojunction with abundant defects and hollow structure(MFCHHS)was constructed.The synergy of defect engineering in MoS_(2),FeS_(2),and the carbon layer of MFCHHS with a larger specific surface area provides multiple storage sites of Na^(+)corresponding to the surface-controlled process.The MoS_(2)/FeS_(2)/C heterostructure and rich defects in MoS_(2) and carbon layer lower the Na^(+) diffusion energy barrier.Additionally,the construction of MoS_(2)/FeS_(2) heterojunction promotes electron transfer at the interface,accompanying with excellent conductivity of the carbon layer to facilitate reversible electrochemical reactions.The abundant defects and mismatches at the interface of MoS_(2)/FeS_(2) and MoS_(2)/C heterojunctions could relieve lattice stress and volume change sequentially.As a result,the MFCHHS anode exhibits the high capacity of 613.1 mA h g^(-1)at 0.5 A g^(-1) and 306.1 mA h g^(-1) at 20 A g^(-1).The capacity retention of 85.0%after 1400 cycles at 5.0 A g^(-1) is achieved.The density functional theory(DFT)calculation and in situ transmission electron microscope(TEM),Raman,ex-situ X-ray photon spectroscopy(XPS)studies confirm the low volume change during intercalation/deintercalation process and the efficient Na^(+)storage in the layered structure of MoS_(2) and carbon layer,as well as the defects and heterostructures in MFCHHS.We believe this work could provide an inspiration for constructing heterojunction with abundant defects to foster fast electron and Na^(+) diffusion kinetics,resulting in excellent rate capability and cycling stability. 展开更多
关键词 Defect engineering HETEROSTRUCTURE Hollow structure Sodium-ion battery MoS_(2)/FeS_(2)
下载PDF
上一页 1 2 85 下一页 到第
使用帮助 返回顶部