A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to ...A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to electrochemical inactivity and low electrical conductivity,resulting in the decay of the capacity and a low rate capability.We present a binder-and conducting agent-free VO_(2)composite electrode using in situ polymerization of dopamine on a flexible current collector of pyroprotein-based fibers.The as-fabricated composite electrode was used as a substrate for the direct growth of VO_(2)as a self-supported form on polydopamine-derived pyroprotein-based fibers(pp-fibers@VO_(2)(B)).It has a high conductivity and flexible nature as a current collector and moderate binding without conventional binders and conducting agents for the VO_(2)(B)cathode.In addition,their electrochemical mechanism was elucidated.Their energy storage is induced by Zn^(2+)/H^(+)coinsertion during discharging,which can be confirmed by the lattice expansion,the formation of by-products including Zn_(x)(OTf)_(y)(OH)_(2x−y)·nH_(2)O,and the reduction of V^(4+)to V^(3+).Furthermore,the assembled Zn//pp-fibers@VO_(2)(B)pouch cells have excellent flexibility and stable electrochemical performance under various bending states,showing application possibilities for portable and wearable power sources.展开更多
基金supported by“Regional Innovation Strategy (RIS)”through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (MOE) (2021RIS-001)supported by National Research Foundation (NRF)funded by the Ministry of Science and Technology (NRF-2021R1F1A1064111)Ministry of Education (NRF-2017R1A6A1A06015181)of the Republic of Korea.
文摘A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to electrochemical inactivity and low electrical conductivity,resulting in the decay of the capacity and a low rate capability.We present a binder-and conducting agent-free VO_(2)composite electrode using in situ polymerization of dopamine on a flexible current collector of pyroprotein-based fibers.The as-fabricated composite electrode was used as a substrate for the direct growth of VO_(2)as a self-supported form on polydopamine-derived pyroprotein-based fibers(pp-fibers@VO_(2)(B)).It has a high conductivity and flexible nature as a current collector and moderate binding without conventional binders and conducting agents for the VO_(2)(B)cathode.In addition,their electrochemical mechanism was elucidated.Their energy storage is induced by Zn^(2+)/H^(+)coinsertion during discharging,which can be confirmed by the lattice expansion,the formation of by-products including Zn_(x)(OTf)_(y)(OH)_(2x−y)·nH_(2)O,and the reduction of V^(4+)to V^(3+).Furthermore,the assembled Zn//pp-fibers@VO_(2)(B)pouch cells have excellent flexibility and stable electrochemical performance under various bending states,showing application possibilities for portable and wearable power sources.