期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries 被引量:13
1
作者 Yipeng Zang Haimin Zhang +5 位作者 Xian Zhang Rongrong Liu Shengwen Liu Guozhong Wang Yunxia Zhang Huijun Zhao 《Nano Research》 SCIE EI CAS CSCD 2016年第7期2123-2137,共15页
Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe203 nanoparticl... Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe203 nanoparticles anchored on Fe-N-doped carbon nanosheets (Fe/Fe2Og@Fe-N-C) using shrimp shell-derived N-doped carbon nanodots as carbon and nitrogen sources in the presence of FeCI3 by a simple pyrolysis approach. Fe/Fe203@Fe-N-C obtained at a pyrolysis temperature of 1,000 ℃ (Fe/Fe2OB@Fe-N-C-1000) possessed a mesoporous structure and high surface area of 747.3 m2-g-1. As an electrocatalyst, Fe/Fe203@Fe-N-C-1000 exhibited bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media, com- parable to that of commercial Pt/C for ORR and RuO2 for OER, respectively. The Zn-air battery test demonstrated that Fe/Fe2OB@Fe-N-C-1000 had a superior rechargeable performance and cycling stability as an air cathode material with an open drcuit voltage of 1.47 V (vs. Ag/AgCl) and a power density of 193 mW.cm-2 at a current density of 220 mA-cm-2. These performances were better than other commercial catalysts with an open circuit voltage of 1.36 V and a power density of 173 mW-cm^-2 at a current density of 220 mA.cm-2 (a mixture of commercial Pt/C and RuO2 with a mass ratio of 1:1 was used for the rechargeable Zn-air battery measurements). This work will be helpful to design and develop low-cost and abundant bifunctional oxygen electrocatalysts for future metal-air batteries. 展开更多
关键词 N-doped carbon nanodots Fe/Fe2O3@Fe-N-dopedcarbon oxygen reduction reaction oxygen evolution reaction rechargeable zinc-airbattery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部