Spent zinc-carbon dry cell batteries were characterized to assess the environmental impacts and also, to identify the potentials of recovering the metal values from these batteries. Different component parts of both n...Spent zinc-carbon dry cell batteries were characterized to assess the environmental impacts and also, to identify the potentials of recovering the metal values from these batteries. Different component parts of both new and spent batteries of all the five types (AAA, AA, C, D and 9V) were examined. The outer steel casings were found to be tin plated. Steel, zinc and manganese constituted 63 percent of the total weight of the battery. Average zinc and manganese contents were about 22 and 24 percent of the total weight of spent batteries. The electrolyte paste of the spent batteries contained 22 wt. percent zinc and 60 wt. percent manganese. The rest was chlorine, carbon and small amounts of iron and other impurity elements. The major phases in the fresh batteries were carbon, MnO2 and NH4Cl, while Zn(NH3)2Cl2, ZnO.Mn2O3, Mn3O2 and Mn2O4 were the prominent phases in the spent batteries. Presence of mercury and cadmium were not detected and a small percentage of lead was found in both the zinc anode and in the electrolyte paste.展开更多
为解决MnO_(2)材料在水系锌离子电池(ZIBs)中存在的导电性差、材料利用率低等问题,以农业废弃物椰壳为原料,将低成本、来源丰富、绿色可再生的生物质资源引入到电极材料中,通过高温碳化得到导电性优异的椰壳碳,用水热法在椰壳碳表面生长...为解决MnO_(2)材料在水系锌离子电池(ZIBs)中存在的导电性差、材料利用率低等问题,以农业废弃物椰壳为原料,将低成本、来源丰富、绿色可再生的生物质资源引入到电极材料中,通过高温碳化得到导电性优异的椰壳碳,用水热法在椰壳碳表面生长MnO_(2)纳米粒子,获得椰壳碳@MnO_(2)复合纳米材料。借助扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电化学技术等表征测试手段,分析该复合材料的形貌结构以及电化学性能。结果表明椰壳碳@MnO_(2)在100 mA g^(-1)的电流密度下,经过300次循环,比容量仍高达到344.6 mA h g^(-1),性能远高于商用MnO_(2)材料(64.3 mA h g^(-1));椰壳碳@MnO_(2)优异的导电性,纳米化的结构设计提高了材料利用率,减少了离子扩散路径,带来更快的离子扩散速率,提高了材料的倍率性能,具有良好的应用前景。展开更多
文摘Spent zinc-carbon dry cell batteries were characterized to assess the environmental impacts and also, to identify the potentials of recovering the metal values from these batteries. Different component parts of both new and spent batteries of all the five types (AAA, AA, C, D and 9V) were examined. The outer steel casings were found to be tin plated. Steel, zinc and manganese constituted 63 percent of the total weight of the battery. Average zinc and manganese contents were about 22 and 24 percent of the total weight of spent batteries. The electrolyte paste of the spent batteries contained 22 wt. percent zinc and 60 wt. percent manganese. The rest was chlorine, carbon and small amounts of iron and other impurity elements. The major phases in the fresh batteries were carbon, MnO2 and NH4Cl, while Zn(NH3)2Cl2, ZnO.Mn2O3, Mn3O2 and Mn2O4 were the prominent phases in the spent batteries. Presence of mercury and cadmium were not detected and a small percentage of lead was found in both the zinc anode and in the electrolyte paste.
文摘为解决MnO_(2)材料在水系锌离子电池(ZIBs)中存在的导电性差、材料利用率低等问题,以农业废弃物椰壳为原料,将低成本、来源丰富、绿色可再生的生物质资源引入到电极材料中,通过高温碳化得到导电性优异的椰壳碳,用水热法在椰壳碳表面生长MnO_(2)纳米粒子,获得椰壳碳@MnO_(2)复合纳米材料。借助扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电化学技术等表征测试手段,分析该复合材料的形貌结构以及电化学性能。结果表明椰壳碳@MnO_(2)在100 mA g^(-1)的电流密度下,经过300次循环,比容量仍高达到344.6 mA h g^(-1),性能远高于商用MnO_(2)材料(64.3 mA h g^(-1));椰壳碳@MnO_(2)优异的导电性,纳米化的结构设计提高了材料利用率,减少了离子扩散路径,带来更快的离子扩散速率,提高了材料的倍率性能,具有良好的应用前景。