期刊文献+
共找到78,694篇文章
< 1 2 250 >
每页显示 20 50 100
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:2
1
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Surface Metallization of Glass Fiber(GF)/Polyetheretherketone(PEEK) Composite with Cu Coatings Deposited by Magnetron Sputtering and Electroplating 被引量:1
2
作者 钟利 金凡亚 +2 位作者 朱剑豪 TONG Honghui DAN Min 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期213-220,共8页
Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), sc... Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating. 展开更多
关键词 surface metallization Cu coating magnetron sputtering ELECTROPLATING
下载PDF
Significantly Improved High-Temperature Energy Storage Performance of BOPP Films by Coating Nanoscale Inorganic Layer 被引量:1
3
作者 Tiandong Zhang Hainan Yu +5 位作者 Young Hoon Jung Changhai Zhang Yu Feng Qingguo Chen Keon Jae Lee Qingguo Chi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期30-38,共9页
Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high tempe... Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films. 展开更多
关键词 coating layer energy storage interfacial barrier polymer films
下载PDF
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer 被引量:1
4
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene Epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Suppressed Internal Intrinsic Stress Engineering in High-Performance Ni-Rich Cathode Via Multi layered In Situ Coating Structure 被引量:1
5
作者 Jiachao Yang Yunjiao Li +3 位作者 Xiaoming Xi Junchao Zheng Jian Yu Zhenjiang He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期58-66,共9页
LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni... LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni-rich LiNi_(x)Co_(y)Al_(z)O_(2)(x>0.8,x+y+z=1)cathode material,which is owing to the structural degradation and particles'intrinsic fracture.To tackle the problems,Li_(0.5)La_(2)Al_(0.5)O_(4)in situ coated and Mn compensating doped multilayer LiNi_(0.82)Co_(0.14)Al_(0.04)O_(2)was prepared.XRD refinement indicates that La-Mn co-modifying could realize appropriate Li/Ni disorder degree.Calculated results and in situ XRD patterns reveal that the LLAO coating layer could effectively restrain crack in secondary particles benefited from the suppressed internal strain.AFM further improves as NCA-LM2 has superior mechanical property.The SEM,TEM,XPS tests indicate that the cycled cathode with LLAO-Mn modification displays a more complete morphology and less side reaction with electrolyte.DEMS was used to further investigate cathode-electrolyte interface which was reflected by gas evolution.NCA-LM2 releases less CO_(2)than NCA-P indexing on a more stable surface.The modified material presents outstanding capacity retention of 96.2%after 100 cycles in the voltage range of 3.0-4.4 V at 1C,13%higher than that of the pristine and 80.8%at 1 C after 300 cycles.This excellent electrochemical performance could be attributed to the fact that the high chemically stable coating layer of Li_(0.5)La_(2)Al_(0.5)O_(4)(LLAO)could enhance the interface and the Mn doping layer could suppress the influence of the lattice mismatch and distortion.We believe that it can be a useful strategy for the modification of Ni-rich cathode material and other advanced functional material. 展开更多
关键词 compensating doped in situ coating multilayer material Ni-rich cathode materials suppressed internal strain
下载PDF
Corrosion behavior of HVOF Inconel 625 coating in the simulated marine environment 被引量:1
6
作者 彭超 钟丰平 +2 位作者 袁梦 谢世杰 王学斌 《China Welding》 CAS 2024年第1期46-51,共6页
High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the ... High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the surface and corrosion resistance properties of Inconel 625 HVOF coating.In this paper,potentiodynamic polarization tests and electrochemical impedance spectroscopy(EIS)tests were carried out to evaluate the corrosion resistance of Inconel 625 coating under simulated marine environment.The experiment-al results showed that Inconel 625 coating revealed low porosity and desired coating thickness.Shift in the corrosion potential(E_(corr))to-wards the noble direction combined with much low corrosion current density(i_(corr))indicating a significant improvement of HVOF Inconel 625 coating compared with the substrate. 展开更多
关键词 high velocity oxygen fuel(HVOF) Inconel 625 coating marine environment corrosion
下载PDF
Tuning Li/Ni mixing by reactive coating to boost the stability of cobalt-free Ni-rich cathode 被引量:1
7
作者 Fanghui Du Xitong Zhang +7 位作者 Yingchao Wang Lei Ding Pengfang Zhang Lingyang Liu Dong Wang Jianzong Man Yuling Chen Yunwu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期20-29,I0002,共11页
Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective s... Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective stabilizer for bulk and surface.However,the impact of interfacial reactions and elemental interdiffusion between AlPO_(4) and LiNi_(0.95)Mn_(0.05)O_(2) upon sintering on the bulk and surface remains elusive.In this study,we demonstrate that during the heat treatment process,AlPO_(4) decomposes,resulting in Al doping into the bulk of the cathode through elemental interdiffusion.Simultaneously,PO_(4)^(3-)reacts with the surface Li of material to form a Li_3PO_(4) coating,inducing lithium deficiency,thereby increasing Li/Ni mixing.The suitable Li/Ni mixing,previously overlooked in AlPO_(4) modification,plays a pivotal role in stabilizing the bulk and surface,exceeding the synergy of Al doping and Li_3PO_(4) coating.The presence of Ni^(2+)ions in the lithium layers contributes to the stabilization of the delithiated structure via a structural pillar effect.Moreover,suitable Li/Ni mixing can stabilize the lattice oxygen and electrode-electrolyte interface by increasing oxygen removal energy and reducing the overlap between the Ni^(3+/4+)e_g and O^(2-)2p orbitals.These findings offer new perspectives for the design of stable cobalt-free cathode materials. 展开更多
关键词 Cobalt-free Ni-rich cathode Li/Ni mixing Al doping Li_(3)PO_(4) coating Lithium-ion batteries
下载PDF
In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries 被引量:1
8
作者 Maoyi Yi Jie Li +5 位作者 Mengran Wang Xinming Fan Bo Hong Zhian Zhang Aonan Wang Yanqing Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期137-143,I0005,共8页
The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poo... The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs. 展开更多
关键词 Single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) In-situ coating PAA-Li Partial protonation
下载PDF
Mathematical modeling and simulations of stress mitigation by coating polycrystalline particles in lithium-ion batteries 被引量:1
9
作者 N.IQBAL J.CHOI +2 位作者 S.F.SHAH C.LEE S.LEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期947-962,共16页
A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDO... A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels. 展开更多
关键词 lithium-ion battery(LIB) polycrystalline particle coating finite element simulation Ni-rich LiNixMnyCo_(z)O_(2)(x>0.8)(NMC)
下载PDF
Developing an atmospheric aging evaluation model of acrylic coatings:A semi-supervised machine learning algorithm
10
作者 Yiran Li Zhongheng Fu +5 位作者 Xiangyang Yu Zhihui Jin Haiyan Gong Lingwei Ma Xiaogang Li Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1617-1627,共11页
To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was d... To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was developed based on aging data including11 environmental factors from 567 cities.A hybrid method of random forest and Spearman correlation analysis was used to reduce the redundancy and multicollinearity of the data set by dimensionality reduction.A semi-supervised collaborative trained regression model was developed with the environmental factors as input and the low-frequency impedance modulus values of the electrochemical impedance spectra of acrylic coatings in 3.5wt%NaCl solution as output.The model improves accuracy compared to supervised learning algorithms model(support vector machines model).The model provides a new method for the rapid evaluation of the aging performance of acrylic coatings,and may also serve as a reference to evaluate the aging performance of other organic coatings. 展开更多
关键词 acrylic coatings coatings aging atmospheric environment machine learning
下载PDF
A brand new green coating technology for realizing the regulation of spherical propellant energy release process
11
作者 Wenhao Fan Yajun Ding Zhongliang Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期78-94,共17页
To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to succe... To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability. 展开更多
关键词 Nanocomposites aqueous coating Fluidized bed coating equipment coated spherical propellant Controllable release of energy Long storage stability
下载PDF
Adhesion property of AlCrNbSiTi high-entropy alloy coating on zirconium:experimental and theoretical studies
12
作者 Bao‑Liang Zhang Wen‑Guan Liu +5 位作者 Meng‑He Tu Can Fang Yan Liu Yu‑Hui Wang Yong Hu Hui Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期79-91,共13页
Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were dep... Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development. 展开更多
关键词 High-entropy alloy coating Cr coating Adhesion property Scratch test First-principles calculation
下载PDF
Long-Cycle Lithium Batteries with LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) Cathodes above 4.5 V Enabled by Uniform Coating of Nanosized Garnet Electrolytes
13
作者 王建群 赵宁 郭向欣 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第7期161-175,共15页
The pursuit of high-energy cathode materials has been focused on raising the charging cutoff voltage of nickel (Ni)-rich layered oxide cathode such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O2 (NCM811). However, the NCM811 suffers... The pursuit of high-energy cathode materials has been focused on raising the charging cutoff voltage of nickel (Ni)-rich layered oxide cathode such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O2 (NCM811). However, the NCM811 suffers from rapid capacity fading upon cycling at cutoff voltage higher than 4.5 V, owing to their structural degradation and labile surface reactivity. Surface-coating with solid electrolytes has been recognized as an effective method to mitigate the performance failure of NCM811 at high voltage. Herein, the nano-sized Li_(6.4)La_(3)Ta_(0.6)Zr_(1.4)O_(12) (LLZTO) is uniformly coated on the surface of single-crystal NCM811 particles, accompanied with the long-range Ta^(5+) diffusion into the transition metal layer of NCM811 lattice. It is revealed that the LLZTO coating can not only inhibit the surface reactions of NCM811 with liquid electrolytes but also play an important role in suppressing the bulk microcracking within the NCM811 particles. The incorporation of Ta^(5+) ion expands the lattice spacing and thereby improves the homogeneity of the Li^(+) diffusion in the single-crystal NCM811, which alleviates the mechanical strain and intragranular cracks caused by nonuniform phases-transformation at high charging voltage. The synergy of surface protection and structural stabilization realized by LLZTO coating enables the NCM811-based lithium batteries to achieve a remarkable electrochemical performance. Typically, LLZTO coated NCM811 delivers a high reversible specific capacity of 202.1 mAh⋅g^(−1) with an excellent capacity retention as high as 70% over 1000 cycles upon charging to 4.5 V at 1 C. 展开更多
关键词 coating CYCLING sized
下载PDF
Preparation and Thermal Stability of AlMoON Based Solar Selective Absorption Coating
14
作者 闵捷 YUAN Wenxu +5 位作者 CHEN Yufei LAN Yapeng YAN Mengdi LIU Hanze CHENG Xudong 代路 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期854-862,共9页
AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON an... AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON and antireflection layer AlMoO from bottom to top.The surface of the deposited coatings is flat without obvious defects.The absorptivity and emissivity are 0.896 and 0.09,respectively,and the quality factor is 9.96.After heat treatment at 500℃-36 h,the surface roughness of the coating increases,a small number of cracks and other defects appear,and the broken part is still attached to the coating surface.A certain degree of element diffusion occurs in the coatings,resulting in the decline of the optical properties of the coatings.The absorptivity and emissivity are 0.883 and 0.131,respectively,the quality factor is 7.06,and the PC value is 0.0335.The coatings do not fail under this condition and have certain thermal stability. 展开更多
关键词 AlMoON coating PREPARATION thermal stability
下载PDF
Multiscale Simulation of Microstructure Evolution during Preparation and Service Processes of Physical Vapor Deposited c-TiAlN Coatings
15
作者 Yehao Long Jing Zhong +2 位作者 Tongdi Zhang Li Chen Lijun Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第6期3435-3453,共19页
Physical Vapor Deposited(PVD)TiAlN coatings are extensively utilized as protective layers for cutting tools,renowned for their excellent comprehensive performance.To optimize quality control of TiAlN coatings for cutt... Physical Vapor Deposited(PVD)TiAlN coatings are extensively utilized as protective layers for cutting tools,renowned for their excellent comprehensive performance.To optimize quality control of TiAlN coatings for cutting tools,a multi-scale simulation approach is proposed that encompasses the microstructure evolution of coatings considering the entire preparation and service lifecycle of PVD TiAlN coatings.This scheme employs phase-field simulation to capture the essential microstructure of the PVD-prepared TiAlN coatings.Moreover,cutting simulation is used to determine the service temperature experienced during cutting processes at varying rates.Cahn-Hilliard modeling is finally utilized to consume the microstructure and service condition data to acquaint the microstructure evolution of TiAlN coatings throughout the cutting processes.This methodology effectively establishes a correlation between service temperature and its impact on the microstructure evolution of TiAlN coatings.It is expected that the present multi-scale numerical simulation approach will provide innovative strategies for assisting property design and lifespan prediction of TiAlN coatings. 展开更多
关键词 Multiscale PHASE-FIELD TiAlN coatings PVD CUTTING
下载PDF
Graphene-calcium carbonate coating to improve the degradation resistance and mechanical integrity of a biodegradable implant
16
作者 Lokesh Choudhary Parama Chakraborty Banerjee +5 位作者 R.K.Singh Raman Derrek E.Lobo Christopher D.Easton Mainak Majumder Frank Witte Jörg F.Löffler 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期394-404,共11页
Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve ... Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve the corrosion resistance of these implants without compromising their mechanical integrity.In this study,an AZ91 magnesium alloy,as a representative for a biodegradable Mg implant material,was modified with a thin reduced graphene oxide(RGO)-calcium carbonate(CaCO_(3))composite coating.Detailed analytical and in-vitro electrochemical characterization reveals that this coating significantly improves the corrosion resistance and mechanical integrity,and thus has the potential to greatly extend the related application field. 展开更多
关键词 Graphene coating Biodegradable implant HYDROXYAPATITE Corrosion Magnesium alloy
下载PDF
Tribological Behaviors of Electroless Nickel-Boron Coating on Titanium Alloy Surface
17
作者 Yao Jia Jianping Lai +3 位作者 Jiaxin Yu Huimin Qi Yafeng Zhang Hongtu He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期309-320,共12页
Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological p... Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields. 展开更多
关键词 Electroless coating Titanium alloy TRIBOLOGY WEAR Heat treatment NANOINDENTATION
下载PDF
Degradation and biocompatibility of one-step electrodeposited magnesium thioctic acid/magnesium hydroxide hybrid coatings on ZE21B alloys for cardiovascular stents
18
作者 Zhao-Qi Zhang Bing-Zhi Li +5 位作者 Pei-Duo Tong Shao-Kang Guan Li Wang Zheng-Hui Qiu Cun-Guo Lin Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期120-138,共19页
Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing comp... Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing composite coatings are usually complicated and time-consuming.Herein,a novel composite coating,composed of bioactive magnesium thioctic acid(MTA)layer formed by deposition and corrosion-resistant magnesium hydroxide(Mg(OH)_(2))layer grown in situ,is simply fabricated on ZE21B alloys via one-step electrodeposition.Scanning electron microscopy(SEM)shows that the electrodeposited coating has a compact and uniform structure.And the high adhesion of the MTA/Mg(OH)_(2)hybrid coating is also confirmed by the micro-scratch test.Electrochemical test,scanning kelvin probe(SKP),and hydrogen evolution measurement indicate that the hybrid coating effectively reduces the degradation rate of Mg substrates.Haemocompatibility experiment and cell culture trial detect that the composite coating is of fine biocompatibility.Finally,the preparation mechanism of MTA/Mg(OH)_(2)hybrid coatings is discussed and proposed.This coating shows a great potential application for cardiovascular stents. 展开更多
关键词 Magnesium alloy Corrosion resistance Hybrid coating ENDOTHELIALIZATION BIOCOMPATIBILITY
下载PDF
HVOF-sprayed HAp/S53P4 BG composite coatings on an AZ31 alloy for potential applications in temporary implants
19
作者 Carlos A.Poblano-Salas John Henao +6 位作者 Astrid L.Giraldo-Betancur Paola Forero-Sossa Diego German Espinosa-Arbelaez Jorge A.González-Sánchez Luis R.Dzib-Pérez Susana T.Estrada-Moo Idelfonso E.Pech-Pech 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期345-360,共16页
Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HA... Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HAp and BG to dissolve and promote osseointegration,considering that both phases have different reaction and dissolution rates under in-vitro conditions.In the present work,75%wt.HAp-25%wt.S53P4 bioactive glass powders were HVOF-sprayed to obtain HAp/S53P4 BG composite coatings on a bioresorbable AZ31 alloy.The study is focused on exploring the effect of the stand-off distance and fuel/oxygen ratio variation as HVOF parameters to obtain stable structural coatings and to establish their effect on the phases and microstructure produced in those coatings.Different characterization techniques,such as scanning electron microscopy,X-ray diffraction,and Fourier transform infrared spectroscopy,were employed to characterize relevant structural and microstructural properties of the composite coatings.The results showed that thermal gradients during coating deposition must be managed to avoid delamination due to the high temperature achieved(max 550℃)and the differences in coefficients of thermal expansion.It was also found that both spraying distance and oxygen/fuel ratio allowed to keep the hydroxyapatite as the main phase in the coatings.In addition,in-vitro electrochemical studies were performed on the obtained HAp/S53P4 BG composite coatings and compared against the uncoated AZ31 alloy.The results showed a significant decrease in hydrogen evolution(at least 98%)when the bioactive coating was applied on the Mg alloy during evaluation in simulated body fluid(SBF). 展开更多
关键词 coatings Composites Thermal spray Temporary implants Hydrogen evolution
下载PDF
High-temperature corrosion of sintered RE_(2)Si_(2)O_(7)(RE=Yb and Ho)environmental barrier coating materials by volcanic ash
20
作者 Ayahisa Okawa Son Thanh Nguyen +7 位作者 Tadachika Nakayama Thi-Mai-Dung Do Hisayuki Suematsu Shu Yin Takuya Hasegawa Tsuneo Suzuki Takashi Goto Koichi Niihara 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1628-1638,共11页
Rare-earth silicates are promising environmental barrier coatings(EBCs)that can protect SiC_(f)/Si C_(m)substrates in next-genera tion gas turbine blades.Notably,RE_(2)Si_(2)O_(7)(RE=Yb and Ho)shows potential as an EB... Rare-earth silicates are promising environmental barrier coatings(EBCs)that can protect SiC_(f)/Si C_(m)substrates in next-genera tion gas turbine blades.Notably,RE_(2)Si_(2)O_(7)(RE=Yb and Ho)shows potential as an EBC due to its coefficient of thermal expansion(CTE)compatible with substrates and high resistance to water vapor corrosion.The target operating temperature for next-generation tur bine blades is 1400°C.Corrosion is inevitable during adhesion to molten volcanic ash,and thus,understanding the corrosion behavior o the material is crucial to its reliability.This study investigates the high-temperature corrosion behavior of sintered RE_(2)Si_(2)O_(7)(RE=Yb and Ho).Samples were prepared using a solid-state reaction and hot-press method.They were then exposed to volcanic ash at 1400°C for 224,and 48 h.After 48 h of exposure,volcanic ash did not react with Yb_(2)Si_(2)O_(7)but penetrated its interior,causing damage.Meanwhile Ho_(2)Si_(2)O_(7)was partially dissolved in the molten volcanic ash,forming a reaction zone that prevented volcanic ash melts from penetrating the interior.With increasing heat treatment time,the reaction zone expanded,and the thickness of the acicular apatite grains increased The Ca:Si ratios in the residual volcanic ash were mostly unchanged for Yb_(2)Si_(2)O_(7)but decreased considerably over time for Ho_(2)Si_(2)O_(7).Th Ca in volcanic ash was consumed and formed apatite,indicating that RE^(3+)ions with large ionic radii(Ho>Yb)easily precipitated apatit from the volcanic ash. 展开更多
关键词 environmental barrier coating volcanic ash rare-earth disilicate CORROSION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部