期刊文献+
共找到18,037篇文章
< 1 2 250 >
每页显示 20 50 100
Enhanced corrosion resistance of epoxy resin coating via addition of CeO_(2) and benzotriazole
1
作者 Xu Han Ruijie Guo +1 位作者 Baolong Niu Hong Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期89-96,共8页
The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion res... The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail. 展开更多
关键词 BENZOTRIAZOLE Cerium dioxide Corrosion resistance Carbon steel epoxy resin coating Preparation
下载PDF
Mechanical behavior of nanorubber reinforced epoxy over a wide strain rate loading
2
作者 Yinggang Miao Jianping Yin +1 位作者 Wenxuan Du Lianyang Chen 《Nano Materials Science》 EI CAS CSCD 2024年第1期106-114,共9页
Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rat... Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating. 展开更多
关键词 Strain rate Strain hardening Nano rubber epoxy Adiabatic shearing localization
下载PDF
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer
3
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Reinforcing Effect of Graphene in Epoxy Adhesives: Review
4
作者 Fatehbahadur Purushottam Lodh Ravindra Vilas Indubai Gadhave 《Open Journal of Composite Materials》 2024年第1期60-70,共11页
Due to its great strength, hardness, and chemical resistance, epoxy adhesives are becoming more and more used. They continue to have drawbacks, nevertheless, such as poor thermal stability, and poor electrical conduct... Due to its great strength, hardness, and chemical resistance, epoxy adhesives are becoming more and more used. They continue to have drawbacks, nevertheless, such as poor thermal stability, and poor electrical conductivity. Two-dimensional graphene is a wonderful substance with exceptional qualities including high strength, high electrical conductivity, and large surface area. Because of these characteristics, graphene has been thoroughly researched for its prospective uses in a variety of industries, including electronics, energy storage, and biomedical engineering. The use of graphene as an additive in epoxy adhesives to enhance the characteristics of such materials is one of its promising uses. This paper reviewed the latest findings about graphene’s effects on epoxy adhesives. The various methods to produce graphene-epoxy composites and their improvements are discussed. This research additionally discusses the challenges associated with the production and processing of graphene-epoxy composites, as well as the mechanisms behind the improvements in mechanical, electrical, and thermal characteristics. The final section of this review discusses the challenges and prospective uses of graphene in epoxy adhesives in the future. 展开更多
关键词 GRAPHENE epoxy Adhesives COMPOSITE Mechanical Properties
下载PDF
Fabrication and Characterization of Bamboo—Epoxy Reinforced Composite for Thermal Insulation
5
作者 Nandavardhan Reddy Kopparthi Jens Schuster Yousuf Pasha Shaik 《Open Journal of Composite Materials》 2024年第1期15-32,共18页
As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime ca... As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change. 展开更多
关键词 Thermal Insulator Rooftiles Hollow Glass Microspheres BAMBOO KAOLIN epoxy VARTM Process Thermal Conductivity Mechanical Properties
下载PDF
Numerical Optimization by Finite Element Method of Stainless Steel/Glass-Epoxy Composite Bolted Joint under Tension and Compression
6
作者 Christian Schmitt Arnaud Kremeur +1 位作者 Pawel Lipinski Julien Capelle 《Engineering(科研)》 2024年第4期102-122,共21页
The aim of this study was to optimize the geometry and the design of metallic/composite single bolted joints subjected to tension-compression loading. For this purpose, it was necessary to evaluate the stress state in... The aim of this study was to optimize the geometry and the design of metallic/composite single bolted joints subjected to tension-compression loading. For this purpose, it was necessary to evaluate the stress state in each component of the bolted join. The multi-material assembly was based on the principle of double lap bolted joint. It was composed of a symmetrical balanced woven glass-epoxy composite material plate fastened to two stainless sheets using a stainless pre-stressed bolt. In order to optimize the design and the geometry of the assembly, ten configurations were proposed and studied: a classical simple bolted joint, two joints with an insert (a BigHead<sup>R</sup> insert and a stair one) embedded in the composite, two “waved” solutions, three symmetrical configurations composed of a succession of metallic and composites layers, without a sleeve, with one and with two sleeves, and two non-symmetrical constituted of metallic and composites layers associated with a stair-insert (one with a sleeve and one without). A tridimensional Finite Element Method (FEM) was used to model each configuration mentioned above. The FE models taked into account the different materials, the effects of contact between the different sheets of the assembly and the pre-stress in the bolt. The stress state was analyzed in the composite part. The concept of stress concentration factor was used in order to evaluate the stress increase in the highly stressed regions and to compare the ten configurations studied. For this purpose, three stress concentration factors were defined: one for a monotonic loading in tension, another for a monotonic loading in compression, and the third for a tension-compression cyclic loading. The results of the FEM computations showed that the use of alternative metallic and composite layers associated with two sleeves gived low values of stress concentration factors, smaller than 1.4. In this case, there was no contact between the bolt and the composite part and the most stressed region was not the vicinity of the hole but the end of the longest layers of the metallic inserts. 展开更多
关键词 Bolted Joint Glass-epoxy Composite CLEARANCE Hybrid Steel-Composite
下载PDF
Smart ZnS@C filler for super-anticorrosive self-healing zinc-rich epoxy coating 被引量:1
7
作者 Kai Yang Yixue Duan +7 位作者 Guicheng Liu Guoyan Ma Hao Fu Xuyong Chen Manxiang Wang Gangqiang Zhu Woochul Yang Yiding Shen 《Nano Research》 SCIE EI CSCD 2022年第5期4756-4764,共9页
The zinc-rich epoxy cathodic protection coating is the most widely used anticorrosion material for marine steel.However,traditional conductive fillers lack the intelligent self-healing effect,which limits the long-ter... The zinc-rich epoxy cathodic protection coating is the most widely used anticorrosion material for marine steel.However,traditional conductive fillers lack the intelligent self-healing effect,which limits the long-term anticorrosion performance.Herein,with uniform carbon-coated ZnS(ZnS@C)nanoballs as the smart active release filler,we propose an anticorrosive and self-healing zinc-rich maleic anhydride epoxy coating.Due to the high pore filling efficiency of the nanoballs,the water vapor transmission rate of the coating with an initial corrosion efficiency of 99.92%and a low-frequency impedance of|Z|f=10mHz=3.88×10^(10) Ω·cm^(2),was reduced by 52%.The carbon-shell of the nanoball increases electron transmission paths in the coating and improves conductivity by nearly two orders of magnitude,which effectively activates more Zn-sites and extends the cathodic protection time.Moreover,once the steel-substrate undergoes regional corrosion,the SO_(4)^(2-)hydrolyzes from the ZnS-core of the nanoball and reacts with iron ions on the corroded area accurately and intelligently to fill the gap and self-heals into a new dense barrier layer(Fe_(2)(SO_(4))_(3),etc.),which significantly improves the shielding protection ability during the long-term usage of the coating.The effective anticorrosion time of the proposed coating could be up to 3,400 h. 展开更多
关键词 smart ZnS@C fller microemulsion-carbonization method zinc-rich epoxy coating anticorrosion SELF-HEALING
原文传递
Effect of Nano Clay on Corrosion Protection of Zinc-rich Epoxy Coatings on Steel 37 被引量:9
8
作者 Farhad Tohidi Shirehjini Iman Danaee +1 位作者 Hadi Eskandari Davood Zarei 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第11期1152-1160,共9页
Epoxy zinc rich coatings containing clay nanoparticles were prepared and the effect of clay content on the cathodic protection performance of the coatings was evaluated by electrochemical impedance spectroscopy(EIS)... Epoxy zinc rich coatings containing clay nanoparticles were prepared and the effect of clay content on the cathodic protection performance of the coatings was evaluated by electrochemical impedance spectroscopy(EIS) and immersion test. Open circuit potential(OCP) measurements and immersion tests were also carried out to better understand the behavior of zinc rich coating. EIS and OCP measurements showed that addition of 1 wt% clay improved the cathodic protection duration and sacrificial properties of the epoxy zinc rich coating. Transmission electron microscopy(TEM) photographs confirmed that clay nanoparticles were successfully dispersed in the coating matrix loaded with 1 wt% clay. Immersion test results indicated that addition of 1 wt% clay nanoparticles in zinc rich epoxy coatings increased the cathodic protection ability of coatings. 展开更多
关键词 epoxy coatings Zinc rich IMPEDANCE Cathodic protection CLAY
原文传递
Reducing damage extent of epoxy coating on magnesium substrate by Zr-enhanced PEO coating as an effective pretreatment 被引量:1
9
作者 Z.Jamshidipour M.Toorani +1 位作者 M.Aliofkhazraei M.Mahdavian 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期641-656,共16页
This research was undertaken to study the effect of Zr-enhanced plasma electrolytic oxidation(PEO) as a pretreatment on the corrosion performance of epoxy coating applied on Magnesium in 3.5 wt.% Na Cl solution. The p... This research was undertaken to study the effect of Zr-enhanced plasma electrolytic oxidation(PEO) as a pretreatment on the corrosion performance of epoxy coating applied on Magnesium in 3.5 wt.% Na Cl solution. The parameters of delamination index along with coating damage index were extracted through electrochemical impedance spectroscopy(EIS) tests to determine how Zr may affect the corrosion protection of duplex PEO/epoxy coated samples. Pull-off adhesion tests were also accomplished to form a better understanding of Zr-enhanced PEO coating’ function. According to the obtained results, the presence of Zr can reduce the damage to the coating system by almost twice. 展开更多
关键词 MAGNESIUM EIS PRETREATMENT PEO epoxy Zirconyl nitrate
下载PDF
Pyrolysis Mechanism of a Cyclotriphosphazene-Based Flame-Retardant Epoxy Resin by ReaxFF Molecular Dynamics
10
作者 Jiang Shuaijun Meng Weifeng +3 位作者 Wan Yongqing Qin Weihua Liu Xiaoqing Lan Yanhua 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期136-152,共17页
Cyclotriphosphazene derivatives can effectively improve the flame retardancy and fire safety of epoxy resins(EPs)via their influence on the pyrolysis process.In this work,the effects of hexa(5-methyl-2-pyridinoxyl)cyc... Cyclotriphosphazene derivatives can effectively improve the flame retardancy and fire safety of epoxy resins(EPs)via their influence on the pyrolysis process.In this work,the effects of hexa(5-methyl-2-pyridinoxyl)cyclotriphosphazene(HMPOP)incorporation on the initial pyrolysis of an EP at 500–3500 K were studied using the ReaxFF method.The pyrolysis fragments,initial reaction pathways,and main products were identified for the EP and EP/HMPOP composites.The activation energies were derived by fitting the weight percentage curves for solid species during the pyrolysis reactions and the obtained values were in good agreement with experimental data.The initial EP pyrolysis reactions included four major decomposition modes,which primarily involved the cleavage of C–O and C–N bonds.The main pyrolysis products were H_(2)O,CO,C_(2)H_(4),and CH_(2)O.HMPOP bonded with the oxygen-containing fragments to form larger molecular fragments and reduced the amounts of C_(0)–C_(4) products,especially that of the harmful gas CH_(2)O.Thus,HMPOP promoted the formation of carbon clusters and reduced the generation of combustible gases,ultimately decreasing the capacity for fire propagation. 展开更多
关键词 epoxy CYCLOTRIPHOSPHAZENE REAXFF PYROLYSIS flame retardancy
下载PDF
A novel high-efficient P/N/Si-containing APP-based flame retardant with a silane coupling agent in its molecular structure for epoxy resin
11
作者 Qiang Sun Jinlei Wang +2 位作者 Xue Meng Jie Zhang Hong Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期137-147,共11页
A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium po... A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium polyphosphate(APP) and silane coupling agent(3-aminopropyl)triethoxysilane(APTES)via cation exchange, which is quite different in the chemical structure from APTES-modified APP for retaining silicon hydroxyls. APTES-APP is highly efficient for the epoxy resin. 8%(mass) APTES-APP imparts excellent flame retardancy to the epoxy resin, with a V-0 rating at the UL-94 test(1.6 mm)and an LOI value of 26%(vol). The peak heat release rate and total smoke production of the flameretardant epoxy resin are decreased by 68.1% and 31.3%, respectively. The synergy of P/N/Si contributes to the well-expanded char residue with a strong and dense surface layer, which is a very good barrier against heat and mass transfer. Besides, there is no significant deterioration in the mechanical properties of flame-retardant epoxy resin thanks to silicon hydroxyls forming hydrogen bonds with epoxy molecules. Meanwhile, other molecules can be grafted onto APTES-APP via these silicon hydroxyls, if needed.Briefly, this work has developed a new strategy for amino silane as flame retardants. In conjunction with a low-cost and simple preparation method, APTES-APP has a promising prospect in the high-performance flame-retardant epoxy. 展开更多
关键词 Ammonium polyphosphate Silane coupling agent All-in-one system Flame retardancy epoxy resin
下载PDF
Effect of Nano Clay Reinforcement on Thermal Conductivity of Epoxy/CNT Composite Material
12
作者 Yelda Akçin Ergün Melih Özçatal 《Journal of Materials Science and Chemical Engineering》 2023年第12期1-9,共9页
Epoxy is one of the most important polymers preferred in various technological applications thanks to its good mechanical properties and lightness. However, their low thermal conductivity limits their usage areas. Inc... Epoxy is one of the most important polymers preferred in various technological applications thanks to its good mechanical properties and lightness. However, their low thermal conductivity limits their usage areas. Increasing the thermal conductivity of epoxy is an important research topic. One of the most ideal ways to achieve this is to improve the thermal conductivity of epoxy without increasing its weight, thanks to nanoparticles. Carbon nanotubes (CNT) and clays are among the materials used for this purpose. In this study, the thermal conductivities of hybrid polymer composites reinforced separately and together in an epoxy matrix were investigated. The aim of the study is to find out how CNT and nano clay affect the thermal conductivity of the epoxy matrix, separately and together, and reveal the synergistic effect of these nanoparticles. 展开更多
关键词 epoxy Carbon Nanotube Nano Clay Thermal Conductivity
下载PDF
Optical and Mechanical Properties of Ramie Fiber/Epoxy Resin Transparent Composites
13
作者 Chunhua Liu Dongfang Zou +3 位作者 Qinqin Huang Shang Li Xia Zheng Xingong Li 《Journal of Renewable Materials》 EI 2023年第10期3613-3624,共12页
The residual resources of ramie fiber-based textile products were used as raw materials.Ramie fiber felt(RF)was modified by NaClO_(2) aqueous solution and then impregnated with water-based epoxy resin(WER).RF/WER tran... The residual resources of ramie fiber-based textile products were used as raw materials.Ramie fiber felt(RF)was modified by NaClO_(2) aqueous solution and then impregnated with water-based epoxy resin(WER).RF/WER transparent composite materials were prepared by lamination hot pressing process.The composite materials’color difference,transmittance,haze,density,water absorption,and mechanical properties were determined to assess the effects of NaClO_(2) treatment and the number of ramie fiber layers on the properties of the prepared composites.The results showed significantly improved optical and mechanical properties of the RF/WER transparent composites after NaClO_(2) treatment.With the increase of ramie fiber layers,the composites’whiteness,transmittance,and water absorption decreased while the haze increased.For material with three layers,the optical transmittance in the visible light region was 82%,and the haze was 96%,indicating the material has both high transmittance and high haze characteristics.The tensile strength increases with the increase of the number of layers,and the tensile strength of the composite with six layers is 243 MPa.This study broadens the scope of application of ramie fiber as a new option for home decoration materials. 展开更多
关键词 Ramie fiber water-based epoxy transparent composites TRANSMITTANCE HAZE tensile strength
下载PDF
A Boron-based Adhesion Aid for Efficient Bonding of Silicone Rubber and Epoxy Resin
14
作者 王安东 ZHOU Peng +6 位作者 TANG Xiaolin YI Shengping ZENG Qihui ZHANG Zhiqiang HU Mingjie 廖俊 黄驰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期718-724,共7页
We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experime... We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experimental results show that the addition of BSi in the silicone rubber(SR)system significantly increases the tensile shear strength between BSi and epoxy resin(EP),reaching 309%of the original value.On this basis,the mechanism of BSi to enhance the adhesion effect was discussed.The electron deficient B in BSi attracted the electron rich N and O in EP to enhance the chemical interaction,combined with the interfacial migration behavior in the curing process,to improve the adhesion strength.This study provides the design and synthesis ideas of adhesive aids,and a reference for further exploring the interface mechanism of epoxy resin matrix composites. 展开更多
关键词 boron based adhesion promoter epoxy resin composites silicone rubber adhesion mechanism
下载PDF
Durability Testing of Composite Aerospace Materials Based on a New Polymer Carbon Fiber-Reinforced Epoxy Resin
15
作者 Jinlong Shang 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2315-2327,共13页
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr... In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%. 展开更多
关键词 Polymer aerospace materials corrosion carbonfiber composite material epoxy resin mechanical properties thermal analysis
下载PDF
An Experimental Study on the Reinforcement of Weakly-Consolidated Shallow Formation in Deep Water Using an Epoxy Resin-Based Fluid
16
作者 Leiju Tian Yuhuan Bu +1 位作者 Huajie Liu Lingyun Zhao 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1215-1226,共12页
The mechanical properties of Portland cement differ from the weakly consolidated shallow formation in deep water.This results in undesired abrupt changes in the compressive strength and elastic modulus at the cement–... The mechanical properties of Portland cement differ from the weakly consolidated shallow formation in deep water.This results in undesired abrupt changes in the compressive strength and elastic modulus at the cement–formation interface.In this study,a water-borne epoxy resin was applied as a strengthening material to reinforce the weakly consolidated shallow formation and protect the cement sheath from potential failure.The mechanical properties of the unconsolidated clay were tested,including their changes with increases in the temperature and curing time.In addition,the effects of the seawater,cement slurry alkaline filtrate,and saltwater drilling fluid were evaluated.As confirmed by the results,the strengthening fluid was excellent at reinforcing the unconsolidated clay,with a compressive strength of 2.49 MPa(after curing for 7 days),even at a dosage of 5%.A cement slurry filtrate with a high pH was suitable to produce the required strengthening of the formation,especially its early age strength.It should also be pointed out that the used fluid exhibited good compatibility with the saltwater drilling fluid and seawater behaved well as a diluent for the strengthening fluid. 展开更多
关键词 Manuscript compressive strength deepwater oil and gas well well cementing epoxy resin weakly consolidated shallow formation
下载PDF
Toughness Effect of Graphene Oxide-Nano Silica on Thermal-Mechanical Performance of Epoxy Resin
17
作者 徐铭涛 张苏心 +4 位作者 周霞 张岩 王萍 谷志旗 李媛媛 《Journal of Donghua University(English Edition)》 CAS 2023年第6期580-589,共10页
A graphene oxide/nano-silica(GOS)hybrid was rapidly and easily synthesized using graphene oxide(GO)and nano-silica(nano-SiO_(2))as raw materials,and the synthesized GOS was used to improve the mechanical properties of... A graphene oxide/nano-silica(GOS)hybrid was rapidly and easily synthesized using graphene oxide(GO)and nano-silica(nano-SiO_(2))as raw materials,and the synthesized GOS was used to improve the mechanical properties of epoxy resin(EP).The modified EP with different mass fractions of GOS(0,0.1%,0.2%,0.3%and 0.4%)were prepared and studied.The structure,thermal stability,mechanical properties,fracture toughness and failure morphology of the modified EP were analyzed.The results showed that the tensile strength of GOS modified EP increased from 40.6 MPa to 80.2 MPa compared with EP,the critical stress intensity factor of GOS modified EP increased by 65.9%from 0.82 MPa·m^(1/2)to 1.36 MPa·m^(1/2),indicating a significant enhancement in fracture toughness.In addition,failure morphology was observed by scanning electron microscopy(SEM)observation.The toughness mechanism of the modified EP was also discussed.Finally,the thermal stability of the modified EP was improved by the addition of GOS.Compared with neat EP,the initial thermal degradation temperature and glass transition temperature of GOS modified EP increased by 4.5℃and 10.3℃,respectively. 展开更多
关键词 toughness modification epoxy resin(EP) graphene oxide(GO) NANO-SILICA mechanical property failure mechanism thermal behavior
下载PDF
Two-Dimensional Co_(2)(OH)1,4-Benzenedicarboxylate-Halloysite Nanotube Nanocomposite-Epoxy Coating with High Corrosion Resistance
18
作者 Zhao Huarong Zhang Yueshuang Cheng Zhilin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期44-53,共10页
Introducing inorganic nanomaterials into a polymer matrix greatly improves the anticorrosion performance of epoxy coatings(EP);however,poor compatibility between the materials can limit the improvement in properties.I... Introducing inorganic nanomaterials into a polymer matrix greatly improves the anticorrosion performance of epoxy coatings(EP);however,poor compatibility between the materials can limit the improvement in properties.In this work,based on the high interface compatibility of two-dimensional(2D)Co_(2)(OH)_(2)BDC(BDC=1,4-benzenedicarboxylate)in the epoxy coating that we reported in previous work,we fabricated a 2D Co_(2)(OH)_(2)BDC-halloysite nanotube(HNT)nanocomposite have a structure consisting of alternating of nanosheets and nanotube by in situ synthesis.The nanocomposite was characterized by Fourier transform infrared spectroscopy,X-ray diffraction,and scanning electron microscopy.The mechanical and anticorrosion performance of the 2D Co_(2)(OH)_(2)BDC-HNT/EP coating was evaluated by mechanical tests and electrochemical impedance spectroscopy spectra.Compared with a conventional unreinforced epoxy coating,the 2D Co_(2)(OH)_(2)BDC-HNT/EP coating had higher mechanical strength and toughness,and the low-frequency impedance modulus of 2D Co_(2)(OH)_(2)BDC-HNT/EP coating was increased by three orders of magnitude,demonstrating the high corrosion resistance of our reinforced coating. 展开更多
关键词 Composite materials 2D Co_(2)(OH)1 4-Benzenedicarboxylate-Halloysite Nanotube halloysite nanotube epoxy coatings corrosion resistance
下载PDF
Relationship between Tensile Properties and Morphology of Epoxy Resin Modified by Epoxidised Natural Rubber
19
作者 Polphat Ruamcharoen Sukanya Umaree Jareerat Ruamcharoen 《材料科学与工程(中英文版)》 2011年第5期504-510,共7页
关键词 环氧化天然橡胶 环氧树脂 拉伸性能 形态学 扫描电子显微镜 差示扫描量热法 改性 ENR
下载PDF
Long-term corona behaviour and performance enhancing mechanism of SiC/epoxy nanocomposite in SF6 gas environment
20
作者 王靖瑞 李庆民 +4 位作者 公衍峰 侯启鑫 刘衡 王健 任瀚文 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期104-116,共13页
Surface coating technology is an effective way to solve the interface insulation problem of DC GIS/GIL basin insulators, but the performance of the coating will change greatly, and the insulation strength will be comp... Surface coating technology is an effective way to solve the interface insulation problem of DC GIS/GIL basin insulators, but the performance of the coating will change greatly, and the insulation strength will be completely lost, after long-term use in the extreme conditions of corona erosion. In this research, the multi-needle-plate electrode platform was constructed to explore the long-term use performance of Si C-doped nanocomposite exposed to corona discharge in SF6gas. Samples with a high Si C content have advantages in maintaining physical and chemical properties such as elemental composition, erosion depth, surface roughness and mass loss. The nanocomposite doped with 6 wt.% Si C has prominent surface insulation strength after long term exposure to corona, and the others are close to losing, or have completely lost,their insulating properties. Furthermore, the degradation mechanism of physicochemical properties of composite exposed to corona discharge was investigated with the proposed Reax FF MD model of energetic particles from SF6decomposition bombarding the epoxy surface. The reaction process of SF particles and F particles with the cross-linked epoxy resin, and the Si C nanoparticles providing shelter to the surrounding polymer and mitigating their suffering direct bombardment, have been established. The damage propagation depth, mass loss and surface roughness change of nanocomposite material bombarded by SF6decomposition products is reproduced in this simulation. Finally, the deterioration mechanism of insulation properties for the Si C-doped composite was elucidated with DFT analysis. The band gap of the molecule containing S drops directly from the initial 7.785 e V to 1.875 e V, which causes the deterioration of surface electric properties. 展开更多
关键词 corona discharge in SF6 SiC doped nanocomposite epoxy resin ReaxFF MD DFT(Some figures may appear in colour only in the online journal)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部