期刊文献+
共找到1,758篇文章
< 1 2 88 >
每页显示 20 50 100
Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium‑Ion Battery Anode 被引量:2
1
作者 Charlie A.F.Nason Ajay Piriya Vijaya Kumar Saroja +3 位作者 Yi Lu Runzhe Wei Yupei Han Yang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期1-16,共16页
With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes ... With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes such as synthetic maturity,longterm cycling stability and fast redox kinetics.Therefore,to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5(KTNO)and its rGO nanocomposite(KTNO/rGO)synthesised via solvothermal methods as a high-performance anode for KIBs.Through effective distribution across the electrically conductive rGO,the electrochemical performance of the KTNO nanoparticles was enhanced.The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g^(−1) and reversible capacity of 97.5 mAh g^(−1) after 500 cycles at 20 mA g^(−1),retaining 76.1%of the initial capacity,with an exceptional rate performance of 54.2 mAh g^(−1)at 1 A g^(−1).Furthermore,to investigate the attributes of KTNO in-situ XRD was performed,indicating a low-strain material.Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage,with the titanium showing greater redox reversibility than the niobium.This work suggests this lowstrain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs. 展开更多
关键词 Potassium-ion batteries INTERCALATION Transition metal oxides Anodes NANOCOMPOSITE
下载PDF
Synergism of preintercalated manganese ions and lattice water in vanadium oxide cathodes for high-capacity and long-life Zn-ion batteries
2
作者 Mengjing Wu Rongrong Li +3 位作者 Kai Yang Lijiang Yin Weikang Hu Xiong Pu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期709-717,共9页
Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials... Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs. 展开更多
关键词 Zn-ion batteries Vanadium oxide Pre-intercalation Lattice water Manganese ion
下载PDF
Surface encapsulation of layered oxide cathode material with NiTiO_(3) for enhanced cycling stability of Na-ion batteries
3
作者 胡紫霖 唐彬 +8 位作者 林挺 张楚 牛耀申 刘渊 高立克 谢飞 容晓晖 陆雅翔 胡勇胜 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期551-558,共8页
In Na-ion batteries,O3-type layered oxide cathode materials encounter challenges such as particle cracking,oxygen loss,electrolyte side reactions,and multi-phase transitions during the charge/discharge process.This st... In Na-ion batteries,O3-type layered oxide cathode materials encounter challenges such as particle cracking,oxygen loss,electrolyte side reactions,and multi-phase transitions during the charge/discharge process.This study focuses on surface coating with NiTiO_(3) achieved via secondary heat treatment using a coating precursor and the surface material.Through in-situ x-ray diffraction(XRD)and differential electrochemical mass spectrometry(DEMS),along with crystal structure characterizations of post-cycling materials,it was determined that the NiTiO_(3) coating layer facilitates the formation of a stable lattice structure,effectively inhibiting lattice oxygen loss and reducing side reaction with the electrolyte.This enhancement in cycling stability was evidenced by a capacity retention of approximately 74%over 300 cycles at 1 C,marking a significant 30%improvement over the initial sample.Furthermore,notable advancements in rate performance were observed.Experimental results indicate that a stable and robust surface structure substantially enhances the overall stability of the bulk phase,presenting a novel approach for designing layered oxide cathodes with higher energy density. 展开更多
关键词 Na-ion battery layered oxides high voltage surface coating
下载PDF
MIL-100(V) derived porous vanadium oxide/carbon microspheres with oxygen defects and intercalated water molecules as high-performance cathode for aqueous zinc ion battery
4
作者 Yuexin Liu Jian Huang +3 位作者 Xiaoyu Li Jiajia Li Jinhu Yang Kefeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期578-589,I0013,共13页
The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(... The development of aqueous zinc ion battery cathode materials with high capacity and high magnification is still a challenge.Herein,porous vanadium oxide/carbon(p-VO_(x)@C,mainly VO_(2) with a small amount of V_(2)O_(3)) core/shell microspheres with oxygen vacancies are facilely fabricated by using a vanadium-based metal-organic framework(MIL-100(V)) as a sacrificial template.This unique structure can improve the conductivity of the VO_(x),accelerate electrolyte diffusion,and suppress structural collapse during circulation.Subsequently,H_(2)O molecules are introduced into the interlayer of VO_(x) through a highly efficient in-situ electrochemical activation process,facilitating the intercalation and diffusion of zinc ions.After the activation,an optimal sample exhibits a high specific capacity of 464.3 mA h g^(-1) at0.2 A g^(-1) and 395.2 mA h g^(-1) at 10 A g^(-1),indicating excellent rate performance.Moreover,the optimal sample maintains a capacity retention of about 89.3% after 2500 cycles at 10 A g^(-1).Density functional theory calculation demonstrates that the presence of oxygen vacancies and intercalated water molecules can significantly reduce the diffusion barrier for zinc ions.In addition,it is proved that the storage of zinc ions in the cathode is achieved by reversible intercalation/extraction during the charge and discharge process through various ex-situ analysis technologies.This work demonstrates that the p-VO_(x)@C has great potential for applications in aqueous ZIBs after electrochemical activation. 展开更多
关键词 Metal-organic frameworks Vanadium oxide Carbon Zn-ion batteries Electrochemical activation
下载PDF
Phase engineering of Ni-Mn binary layered oxide cathodes for sodiumion batteries
5
作者 Feifei Hong Xin Zhou +9 位作者 Xiaohong Liu Guilin Feng Heng Zhang Weifeng Fan Bin Zhang Meihua Zuo Wangyan Xing Ping Zhang Hua Yan Wei Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期501-511,共11页
Nickel-manganese binary layered oxides with high working potential and low cost are potential candidates for sodium-ion batteries,but their electrochemical properties are highly related to compositional diversity.Dive... Nickel-manganese binary layered oxides with high working potential and low cost are potential candidates for sodium-ion batteries,but their electrochemical properties are highly related to compositional diversity.Diverse composite materials with various phase structures of P3,P2/P3,P2,P2/O3,and P2/P3/O3 were synthesized by manipulating the sodium content and calcination conditions,leading to the construction of a synthetic phase diagram for Na_(x)Ni_(0.25)Mn_(0.75)O_(2)(0.45≤x≤1.1).Then,we compared the electrochemical characteristics and structural evolution during the desodiation/sodiation process of P2,P2/P3,P2/03,and P2/P3/O3-Na_(x)Ni_(0.25)Mn_(0.75)O_(2).Among them,P2/P3-Na0.75Ni0.25Mn0.75O2exhibits the best rate capability of 90.9 mA h g^(-1)at 5 C,with an initial discharge capacity of 142.62 mA h g^(-1)at 0.1 C and a capacity retention rate of 78.25%after 100 cycles at 1 C in the voltage range of 2-4.3 V.The observed superior sodium storage performance of P2/P3 hybrids compared to other composite phases can be attributed to the enhanced Na^(+)transfer dynamic,reduction of the Jahn-teller effect,and improved reaction reversibility induced by the synergistic effect of P2 and P3 phases.The systematic research and exploration of phases in Na_(x)Ni_(0.25)Mn_(0.75)O_(2)provide new sights into high-performance nickel-manganese binary layered oxide for sodium-ion batteries. 展开更多
关键词 Phase engineering Ni-Mn layered oxide CATHODE Sodium-ion batteries
下载PDF
Structural and electrochemical stabilization enabling high-energy P3-type Cr-based layered oxide cathode for K-ion batteries
6
作者 Wonseok Ko Seokjin Lee +7 位作者 Hyunyoung Park Jungmin Kang Jinho Ahn Yongseok Lee Gwangeon Oh Jung-Keun Yoo Jang-Yeon Hwang Jongsoon Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期81-93,共13页
Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe ... Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe structural change by de/intercalation and diffusion of K^(+)ions with large ionic size,which results in not only much lower reversible capacity than the theoretical capacity but also poor power capability.Thus,it is important to enhance the structural stability of the layered-type TM oxides for outstanding electrochemical behaviors under the K-ion battery system.Herein,it is investigated that the substitution of the appropriate Ti^(4+)contents enables a highly enlarged reversible capacity of P3-type KxCrO_(2) using combined studies of first-principles calculation and various experiments.Whereas the pristine P3-type KxCrO_(2) just exhibits the reversible capacity of∼120 mAh g^(−1) in the voltage range of 1.5-4.0 V(vs.K^(+)/K),the∼0.61 mol K^(+)corresponding to∼150 mAh g^(−1) can be reversible de/intercalated at the structure of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) under the same conditions.Furthermore,even at the high current density of 788 mA g^(−1),the specific capacity of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) is∼120 mAh g^(−1),which is∼81 times larger than that of the pristine P3-type KxCrO_(2).It is believed that this research can provide an effective strategy to improve the electrochemical performances of the cathode materials suffered by severe structural change that occurred during charge/discharge under not only K-ion battery system but also other rechargeable battery systems. 展开更多
关键词 cathodes first-principles calculations layered-type oxide materials potassium-ion batteries structural stabilization
下载PDF
Understanding the catalysis of chromium trioxide added magnesium hydride for hydrogen storage and Li ion battery applications
7
作者 D.Pukazhselvan IhsanÇaha +3 位作者 Catarina de Lemos Sergey M.Mikhalev Francis Leonard Deepak Duncan Paul Fagg 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1117-1130,共14页
This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) addi... This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) additive reduces the dehydrogenation activation energy of MgH_(2) by 68 kJ/mol and lowers the required dehydrogenation temperature by 80℃.CrO_(3) added MgH_(2) was also tested as an anode in an Li ion battery,and it is possible to deliver over 90%of the total theoretical capacity(2038 mAh/g).Evidence for improved reversibility in the battery reaction is found only after the incorporation of additives with MgH_(2).In depth characterization study by X-ray diffraction(XRD)technique provides convincing evidence that the CrO_(3) additive interacts with MgH_(2) and produces Cr/MgO byproducts.Gibbs free energy analyses confirm the thermodynamic feasibility of conversion from MgH_(2)/CrO_(3) to MgO/Cr,which is well supported by the identification of Cr(0)in the powder by X ray photoelectron spectroscopy(XPS)technique.Through high resolution transmission electron microscopy(HRTEM)and energy dispersive spectroscopy(EDS)we found evidence for the presence of 5 nm size Cr nanocrystals on the surface of MgO rock salt nanoparticles.There is also convincing ground to consider that MgO rock salt accommodates Cr in the lattice.These observations support the argument that creation of active metal–metal dissolved rock salt oxide interface may be vital for improving the reactivity of MgH_(2),both for the improved storage of hydrogen and lithium. 展开更多
关键词 Hydrogen storage Rechargeable batteries Binary hydrides Metal oxides Catalytic mechanism.
下载PDF
Graphene effectively activating "dead" water molecules between manganese dioxide layers in potassium-ion battery
8
作者 Xinhai Wang Wensheng Yang +5 位作者 Shengshang Lu Shangshu Peng Tong Guo Quan Xie Qingquan Xiao Yunjun Ruan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期306-315,I0008,共11页
Aqueous potassium-ion batteries(APIBs),recognized as safe and reliable new energy devices,are considered as one of the alternatives to traditional batteries.Layered MnO_(2),serving as the main cathode,exhibits a lower... Aqueous potassium-ion batteries(APIBs),recognized as safe and reliable new energy devices,are considered as one of the alternatives to traditional batteries.Layered MnO_(2),serving as the main cathode,exhibits a lower specific capacity in aqueous electrolytes compared to organic systems and operates through a different reaction mechanism.The application of highly conductive graphene may effectively enhance the capacity of APIBs but could complicate the potassium storage environment.In this study,a MnO_(2) cathode pre-intercalated with K~+ions and grown on graphene(KMO@rGO) was developed using the microwave hydrothermal method for APIBs.KMO@rGO achieved a specific capacity of 90 mA h g^(-1) at a current density of 0.1 A g^(-1),maintaining a capacity retention rate of>90% after 5000 cycles at 5 A g^(-1).In-situ and exsitu characterization techniques revealed the energy-storage mechanism of KMO@rGO:layered MnO_(2)traps a large amount of "dead" water molecules during K~+ions removal.However,the introduction of graphene enables these water molecules to escape during K~+ ions insertion at the cathode.The galvanostatic intermittent titration technique and density functional theory confirmed that KMO@rGO has a higher K~+ions migration rate than MnO_(2).Therefore,the capacity of this cathode depends on the interaction between dead water and K~+ions during the energy-storage reaction.The optimal structural alignment between layered MnO_(2) and graphene allows electrons to easily flow into the external circuit.Rapid charge compensation forces numerous low-solvent K~+ions to displace interlayer dead water,enhancing the capacity.This unique reaction mechanism is unprecedented in other aqueous battery studies. 展开更多
关键词 GRAPHENE K-ion batteries Mn-based layered oxide Water molecules Density functional theory
下载PDF
Research progress of alkaline earth metal iron-based oxides as anodes for lithium-ion batteries
9
作者 Mingyuan Ye Xiaorui Hao +6 位作者 Jinfeng Zeng Lin Li Pengfei Wang Chenglin Zhang Li Liu Fanian Shi Yuhan Wu 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期21-33,共13页
Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical cap... Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical capacity of 372 mA·h·g^(−1),thus hindering further development toward high-capacity and large-scale applications.Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost,good thermal stability,superior stability,and high electrochemical performance.Nonetheless,many issues and challenges remain to be addressed.Herein,we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes.Meanwhile,the material and structural properties,synthesis methods,electrochemical reaction mechanisms,and improvement strategies are introduced.Finally,existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs. 展开更多
关键词 alkali-earth metal iron-based oxides anodes lithium-ion batteries electrochemical energy storage
下载PDF
Achieving structurally stable O3-type layered oxide cathodes through site-specific cation-anion co-substitution for sodium-ion batteries
10
作者 Yihao Shen Chen Cheng +5 位作者 Xiao Xia Lei Wang Xi Zhou Pan Zeng Jianrong Zeng Liang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期411-418,I0011,共9页
O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrolla... O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrollable phase transitions and intricate Na^(+)diffusion pathways during cycling,resulting in compromised structural stability and reduced capacity over cycles.This study introduces a special approach employing site-specific Ca/F co-substitution within the layered structure of O_(3)-NaNi_(0.5)Mn_(0.5)O_(2) to effectively address these issues.Herein,the strategically site-specific doping of Ca into Na sites and F into O sites not only expands the Na^(+)diffusion pathways but also orchestrates a mild phase transition by suppressing the Na^(+)/vacancy ordering and providing strong metal-oxygen bonding strength,respectively.The as-synthesized Na_(0.95)Ca_(0.05)Ni_(0.5)Mn_(0.5)O_(1.95)F_(0.05)(NNMO-CaF)exhibits a mild O3→O3+O'3→P3 phase transition with minimized interlayer distance variation,leading to enhanced structural integrity and stability over extended cycles.As a result,NNMO-CaF delivers a high specific capacity of 119.5 mA h g^(-1)at a current density of 120 mA g^(-1)with a capacity retention of 87.1%after 100 cycles.This study presents a promising strategy to mitigate the challenges posed by multiple phase transitions and augment Na^(+)diffusion kinetics,thus paving the way for high-performance layered cathode materials in sodium-ion batteries. 展开更多
关键词 Sodium-ion batteries O3-type layered oxides Site-specific co-doping Phase transition
下载PDF
Revealing the role of calcium ion intercalation of hydrated vanadium oxides for aqueous zinc-ion batteries
11
作者 Tao Zhou Xuan Du Guo Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期9-19,I0001,共12页
Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely... Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely limited the feasibility of such materials.In this work,unique hydrated vanadates(CaVO,BaVO)were obtained by intercalation of Ca^(2+)or Ba^(2+)into hydrated vanadium pentoxide.In the CaVO//Zn and BaVO//Zn batteries systems,the former delivered up to a 489.8 mAh g^(-1)discharge specific capacity at 0.1 A g^(-1).Moreover,the remarkable energy density of 370.07 Wh kg^(-1)and favorable cycling stability yard outperform BaVO,pure V_(2)O_(5),and many reported cathodes of similar ionic intercalation compounds.In addition,pseudocapacitance analysis,galvanostatic intermittent titration(GITT)tests,and Trasatti analysis revealed the high capacitance contribution and Zn^(2+)diffusion coefficient of CaVO,while an in-depth investigation based on EIS elucidated the reasons for the better electrochemical performance of CaVO.Notably,ex-situ XRD,XPS,and TEM tests further demonstrated the Zn^(2+)insertion/extraction and Zn-storage mechanism that occurred during the cycle in the CaVO//Zn battery system.This work provides new insights into the intercalation of similar divalent cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity aqueous ZIBs. 展开更多
关键词 Aqueous zinc ion batteries Cathode materials Ion pre-intercalation Vanadium oxides Energy storage mechanism
下载PDF
Boron-doped high-entropy oxide toward high-rate and long-cycle layered cathodes for wide-temperature sodium-ion batteries
12
作者 Yuzhen Dang Zhe Xu +8 位作者 Yurong Wu Runguo Zheng Zhiyuan Wang Xiaopin Lin Yanguo Liu Zheng-Yao Li Kai Sun Dongfeng Chen Dan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期577-587,I0012,共12页
03-type layered metal oxides hold great promise for sodium-ion batteries cathodes owing to their energy density advantage.However,the severe irreversible phase transition and sluggish Na^(+)diffusion kinetics pose sig... 03-type layered metal oxides hold great promise for sodium-ion batteries cathodes owing to their energy density advantage.However,the severe irreversible phase transition and sluggish Na^(+)diffusion kinetics pose significant challenges to achieve high-performance layered cathodes.Herein,a boron-doped03-type high entropy oxide Na(Fe_(0.2)Co_(0.15)Cu_(0.05)Ni_(0.2)Mn_(0.2)Ti_(0.2))B_(0.02)O_(2)(NFCCNMT-B_(0.02))is designed and the covalent B-O bonds with high entropy configuration ensure a robust layered structure.The obtained cathode NFCCNMT-B_(0.02)exhibits impressive cycling performance(capacity retention of 95%and 82%after100 cycles and 300 cycles at 1 and 10 C,respectively)and outstanding rate capability(capacity of 83 mAh g^(-1)at 10 C).Furthermore,the NFCCNMT-B_(0.02)demonstrates a superior wide-temperature performance,maintaining the same capacity level(113,4 mAh g^(-1)@-20℃,121 mAh g^(-1)@25℃,and 119 mAh g^(-1)@60℃)and superior cycle stability(90%capacity retention after 100 cycles at 1 C at-20℃).The high-entropy configuration design with boron doping strategy contributes to the excellent sodium-ion storage performance.The high-entropy configuration design effectively suppresses irreversible phase transitions accompanied by small volume changes(ΔV=0.65 A3).B ions doping expands the Na layer distance and enlarges the P3 phase region,thereby enhancing Na^(+)diffusion kinetics.This work offers valuable insights into design of high-performance layered cathodes for sodium-ion batteries operating across a wide temperature. 展开更多
关键词 High entropy oxide Born substitution Phase transition Na~+diffusion kinetics Sodium-ion batteries
下载PDF
Cycling performance of layered oxide cathode materials for sodium-ion batteries
13
作者 Jinpin Wu Junhang Tian +1 位作者 Xueyi Sun Weidong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1720-1744,共25页
Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the applicat... Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials. 展开更多
关键词 sodium-ion battery layered oxide materials cycling performance bulking doping surface coating concentration gradient mixed structure high-entropy
下载PDF
Designing ultrastable P2/O3-type layered oxides for sodium ion batteries by regulating Na distribution and oxygen redox chemistry
14
作者 Jieyou Huang Weiliang Li +3 位作者 Debin Ye Lin Xu Wenwei Wu Xuehang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期466-476,共11页
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas... P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs. 展开更多
关键词 Sodium-ion batteries P2/O3-type layered oxides Na distribution Oxygen redox chemistry Hydrostability
下载PDF
Weakly Polarized Organic Cation-Modified Hydrated Vanadium Oxides for High-Energy Efficiency Aqueous Zinc-Ion Batteries
15
作者 Xiaoxiao Jia Chaofeng Liu +2 位作者 Zhi Wang Di Huang Guozhong Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期169-186,共18页
Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic chara... Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic characteristics,and high theoretical capacities.However,challenges such as vanadium dissolution,sluggish Zn^(2+)diffusion kinetics,and low operating voltage still hinder their direct application.In this study,we present a novel vanadium oxide([C_(6)H_(6)N(CH_(3))_(3)]_(1.08)V_(8)O_(20)·0.06H_(2)O,TMPA-VOH),developed by pre-inserting trimethylphenylammonium(TMPA+)cations into VOH.The incorporation of weakly polarized organic cations capitalizes on both ionic pre-intercalation and molecular pre-intercalation effects,resulting in a phase and morphology transition,an expansion of the interlayer distance,extrusion of weakly bonded interlayer water,and a substantial increase in V^(4+)content.These modifications synergistically reduce the electrostatic interactions between Zn^(2+)and the V-O lattice,enhancing structural stability and reaction kinetics during cycling.As a result,TMPA-VOH achieves an elevated open circuit voltage and operation voltage,exhibits a large specific capacity(451 mAh g^(-1)at 0.1 A g^(-1))coupled with high energy efficiency(89%),the significantly-reduced battery polarization,and outstanding rate capability and cycling stability.The concept introduced in this study holds great promise for the development of high-performance oxide-based energy storage materials. 展开更多
关键词 Zinc-ion battery Vanadium oxide V_(2)O_(5)·nH_(2)O Pre-intercalation Interlayer engineering
下载PDF
Phase-engineering modulation of Mn-based oxide cathode for constructing super-stable sodium storage 被引量:1
16
作者 Quanqing Zhao Ruru Wang +5 位作者 Ming Gao Bolin Liu Jianfeng Jia Haishun Wu Youqi Zhu Chuanbao Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期421-427,I0010,共8页
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ... The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries. 展开更多
关键词 Sodium ion battery oxide cathode Phase engineering Phase diagram Na~+kinetic
下载PDF
Cationic ordering transition in oxygen-redox layered oxide cathodes
17
作者 Xinyan Li Ang Gao +10 位作者 Qinghua Zhang Hao Yu Pengxiang Ji Dongdong Xiao Xuefeng Wang Dong Su Xiaohui Rong Xiqian Yu Hong Li Yong-Sheng Hu Lin Gu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期197-206,共10页
Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na... Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes. 展开更多
关键词 cationic ordering layered oxide cathodes oxygen redox sodium-ion batteries
下载PDF
Recent progress in Ni-rich layered oxides and related cathode materials for Li-ion cells
18
作者 Boyang Fu Maciej Moździerz +1 位作者 Andrzej Kulka Konrad Świerczek 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2345-2367,共23页
Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the... Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the energy density,cyclability,charging speed,reduced costs,as well as safety and stability,already contribute to the wider adoption of LIBs,which extends nowadays beyond mobile electronics,power tools,and electric vehicles,to the new range of applications,including grid storage solutions.With numerous published papers and broad reviews already available on the subject of Ni-rich oxides,this review focuses more on the most recent progress and new ideas presented in the literature references.The covered topics include doping and composition optimization,advanced coating,concentration gradient and single crystal materials,as well as innovations concerning new electrolytes and their modification,with the application of Ni-rich cathodes in solid-state batteries also discussed.Related cathode materials are briefly mentioned,with the high-entropy approach and zero-strain concept presented as well.A critical overview of the still unresolved issues is given,with perspectives on the further directions of studies and the expected gains provided. 展开更多
关键词 lithium-ion batteries cathode materials nickel-rich layered oxides recent progress critical issues improvement strategies
下载PDF
High-Voltage and Fast-Charging Lithium Cobalt Oxide Cathodes: From Key Challenges and Strategies to Future Perspectives
19
作者 Gongrui Wang Zhihong Bi +3 位作者 Anping Zhang Pratteek Das Hu Lin Zhong-Shuai Wu 《Engineering》 SCIE EI CAS CSCD 2024年第6期105-127,共23页
Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithiu... Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithium ion(Li+)-storage performance of the most commercialized lithium cobalt oxide(LiCoO_(2),LCO)cathodes is still far from satisfactory in terms of high-voltage and fast-charging capabilities for reaching the double-high target.Herein,we systematically summarize and discuss high-voltage and fast-charging LCO cathodes,covering in depth the key fundamental challenges,latest advancements in modification strategies,and future perspectives in this field.Comprehensive and elaborated discussions are first presented on key fundamental challenges related to structural degradation,interfacial instability,the inhomogeneity reactions,and sluggish interfacial kinetics.We provide an instructive summary of deep insights into promising modification strategies and underlying mechanisms,categorized into element doping(Li-site,cobalt-/oxygen-site,and multi-site doping)for improved Li+diffusivity and bulkstructure stability;surface coating(dielectrics,ionic/electronic conductors,and their combination)for surface stability and conductivity;nanosizing;combinations of these strategies;and other strategies(i.e.,optimization of the electrolyte,binder,tortuosity of electrodes,charging protocols,and prelithiation methods).Finally,forward-looking perspectives and promising directions are sketched out and insightfully elucidated,providing constructive suggestions and instructions for designing and realizing high-voltage and fast-charging LCO cathodes for next-generation double-high LIBs. 展开更多
关键词 Lithium cobalt oxide High energy/power density Fast-charging HIGH-VOLTAGE Lithium-ion battery
下载PDF
Research progress on vanadium oxides for potassium-ion batteries 被引量:2
20
作者 Yuhan Wu Guangbo Chen +6 位作者 Xiaonan Wu Lin Li Jinyu Yue Yinyan Guan Juan Hou Fanian Shi Jiyan Liang 《Journal of Semiconductors》 EI CAS CSCD 2023年第4期46-59,共14页
Potassium-ion batteries(PIBs)have been considered as promising candidates in the post-lithium-ion battery era.Till now,a large number of materials have been used as electrode materials for PIBs,among which vanadium ox... Potassium-ion batteries(PIBs)have been considered as promising candidates in the post-lithium-ion battery era.Till now,a large number of materials have been used as electrode materials for PIBs,among which vanadium oxides exhibit great potentiality.Vanadium oxides can provide multiple electron transfers during electrochemical reactions because vanadium possesses a variety of oxidation states.Meanwhile,their relatively low cost and superior material,structural,and physicochemical properties endow them with strong competitiveness.Although some inspiring research results have been achieved,many issues and challenges remain to be further addressed.Herein,we systematically summarize the research progress of vanadium oxides for PIBs.Then,feasible improvement strategies for the material properties and electrochemical performance are introduced.Finally,the existing challenges and perspectives are discussed with a view to promoting the development of vanadium oxides and accelerating their practical applications. 展开更多
关键词 potassium-ion batteries vanadium oxides electrode materials electrochemical performance improvement strategies
下载PDF
上一页 1 2 88 下一页 到第
使用帮助 返回顶部